

低温高密核物质测量谱仪(CEE) 研制进展

余玉洪

中国科学院近代物理研究所、中国科学技术大学、清华大学、华中师范大学、复旦大学

2023年8月9日,恩施

1) CEE核心物理目标

2) 总体研制进展

3) 分系统研制进展

4) 总结和展望

强相互作用(QCD)相图的研究

国际中相物质相结构实验

高重子密度区对称能研究

1) CEE核心物理目标

2) 总体研制进展

3) 分系统研制进展

4) 总结和展望

CEE 谱仪组成(工程系统):

- 1) 超导二极磁铁
- 2) 微像素探测器 (BM)
- 3) 时间投影室 (TPC)
- 4) 起始时间探测器和内飞行时间探测器 (T0/iTOF)
- 5) 端盖飞行时间探测器 (eTOF)
- 6) 多丝漂移室 (MWDC)
- 7) 零度角量能器 (ZDC)
- 8) 数据获取系统 (DAQ)
- 9) 触发系统 (Trigger)
- 10) 时钟(Clock)
- 11) 慢控制 (SL Control)
- 12) 技术支持

CEE谱仪设计需求分析

几个典型的物理目标对HIRFL-CSR的束流和CEE谱仪的物理需求

序号	物理目 标	所需束流 种类、流强和 能量(MeV/u)	HIRFL-CSR 束流设计指标	典型 反应道	测量产物	束流状态备注	
1	低	Xe, 10 ⁵ pps E=600,400	129 Xe ⁵⁴⁺ ,5 × 10 ⁶ pps E _{max} = 780MeV/u	Xe+CsI	π, p, d, t, ³ He, ⁴ He	已提供235 MeV/u的 ¹²⁹ Xe ²⁷⁺ ,新注入器投 入使用后到前述指 标	
		C, 10 ⁵ pps E=600,400	$^{12}C^{6+},10^{8}pps$ $E_{max} = 1 GeV/u$	C+C	π, p, d, t, ³ He, ⁴ He	已实现 600MeV/u 的 慢引出,升级后到 1GeV/u	
2	重子数 涨落	²³⁸ U, 10 ⁴ pps 500 MeV/u	²³⁸ U ⁷⁸⁺ , 10 ⁶ pps E _{max} = 520MeV/u	U+U	π, p 和 d	已提供过 110MeV/u 的 ²³⁸ U ³²⁺ ,流强 10⁶pps ,新注入器投 入使用后可达前述 指标。	
		C, 10 ⁵ pps 500 MeV		C+Pb	π, p 和 d	已实现 600MeV/u 的	
3	超核	C, 5×10 ⁵ pps 1GeV/u	同以上 C 東流	C+Pb	$^{3}\Lambda$ He 1µb	慢引出,升级后到 1GeV/u	

1)物理需求分析:
□~几百MeV/U重离子束流
□+探针主要为轻带电粒子
□其它说明:
·微像素和TO: 束流测量
·ZDC: 探针为轻+重带电粒子 碎片
✓ 1)轻带电粒子鉴别及测量
✓ 2)低物质量需求
✓ 3)大动态范围需求

物理技术指标需求

2) 工程需求:

□机、电、热、EMC等
 □环境、辐射、磁场等
 □产品"六性"等

□通用带电粒子磁谱仪: **粒子种类鉴别 + 运动学参量测量**

p - *v*

CeeROOT主页(开源软件): https://gitee.com/CEESM/CeeRoot

完成谱仪工程总体方案设计 □完成机械、热总体设计 □完成抗辐射、磁和EMC等 总体设计 □产品"六性"设计等 □其它设计

- 1) CEE核心物理目标
- 2) 总体研制进展
- 3) 分系统研制进展
- 4) 总结和展望

TPC探测器分系统进展-1

主要功能:放置于磁铁中心,用于测量大角度区带电 粒子的径迹,并进行粒子鉴别

研制单位:近代物理研究所、复旦大学

主要技术挑战:

- 国内**首个大尺寸TPC**、多通路(>15000)、低 物质量设计要求、高计数率(~10kHz)
- 提出左右镜像结构,对重离子束流进行避让

TPC场笼

读出平面设计

%样机实物图

MWDC探测器分系统进展-1

主要功能:通过3块灵敏面积不同的多丝漂移室,进行

CEE前 角区的带电粒子径迹测量 研制单位:近代物理研究所、 清华大学、中国科学技术大学

MWDC各丝层采用分区模式,方便运行维护

- □ 金属垫块保证丝层间距, 具有更高机械强度和定 位精度
- 布丝采用高精度定位齿
 条,保证了丝间距
- □ 采用分区模式,便于运行维护
- □ 探测器中心采用**开窗模** 式,实现**束流避让**

MWDC探测器分系统进展-2

iTOF FEE

MRPC读出电子学时间精度

iTOF探测器

eTOF探测器分系统进展

主要功能:端盖飞行时间探测器 (eTOF)位于磁场外部,束流线 下游,记录末态粒子达到时刻,并参与触发事例判选 研制单位:清华大学、中国科学技术大学

首次采用节能环保的自密封型MRPC

类别	大尺寸SMRPC	小尺寸SMRPC	
结构	2室×5气隙		
数目	18	6	
灵敏面积(mm²)	480×560	480×280	
读出条数目	32	16	
读出条宽度	1.5+0.2 cm	1.5+0.2 cm	
气隙宽度	0.25mm		

探测器结构与工作原理

Cathode

研制单位:华中师范大学、近代物理研究所

ZDC探测器分系统进展

主要功能: 测量前向区带电粒子在ZDC里的沉积能量和击中位置信息,得到核核碰撞中事件碰撞中心度和事件平面

研制单位:华中师范大学、近代物理研究所

ZDC探测器的几何参数					
距磁铁中心距离	2.95 m				
ZDC轮盘内径	5 cm				
ZDC轮盘外径	100 cm				
探测模块数	192 (24扇区×8模块/扇区)				
电子学 <u>道数</u> (双打拿极输出)	384				
ZDC主要技术指标					
探测效率	>95%				
通道占有度	<15%				
有效面积	$> 1m^2$				

主要功能:实现科学数据的正确采集、传输、处理、组装和存储

研制单位:中国科学技术大学

主要功能:

- 实现束流实验及不同工作模式下的触 发判选和全局触发提供
- □ 协调各子系统的触发和同步
- □ 各上行信号与全局信号监控

研制单位:清华大学、中国科学技术大学

序号	工作模式	工作阶段	功能	触发和DAQ工作模式
1	正常模式	实验运行期间	1)在束流周期内,进行科学数 据的取数:2)在非束流周期,进 行时钟同步初始化。	T0、ACC、eTOF和iTOF探 测器参与触发
2	标定模式	集成联试阶段、实验准备 阶段、实验运行期间、长 期运行维护阶段	1)利用宇宙射线或者放射源进 行探测器性能标定:2)利用LED、 激光进行探测器性能性能标定	1) eT0F和 iT0F探测器参 与触发 ; 2) 自触发模 式 ; 3) 外部脉冲信号触发
3	电子学自 检模式	集成联试阶段、实验准备 阶段、长期运行维护阶段	1)进行电子学性能自检:2)利用 外部脉冲信号源行电子学性能 检测	1)电子学周期脉冲信号; 2)外部输入周期脉冲信 号

主要功能:为CEE所有探测器电子学节点提供高品质时钟,为全系统高精度时间测量和事例对 齐提供时间基准

研制单位:中国科学技术大学

慢控制分系统进展

主要功能:实现谱仪运行状态的检测和在线监测、运行参数 的记录;实现谱仪现场仪器、仪表等的远程控制 研制单位:近代物理研究所

CEE谱仪(模块级)首次束流试验联调

Fe束,350MeV/u,RIBLLII外靶实验终端

■参束分系统:T0/iTOF、eTOF、MWDC、TPC、DAQ、时钟、触发、慢控制 ■谱仪(模块级)可以集成在一起工作

1) CEE核心物理目标

2) 总体研制进展

3) 分系统研制进展

4) 总结和展望

CEE+@HIAF

1) CEE 谱仪的核心物理目标是在HIRFL-CSR能区开展QCD

相图和核物质状态方程的研究

2) CEE 谱仪总体进展顺利,完成了首次(模块级)束流试 验,可以按照任务书时间计划完成研制任务工作,进入实 验取数阶段(2024年底)

3) CEE+@HIAF 将提供更多重子密度区的实验机会

