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High Luminosity LHC & Beyond
• At the HL-LHC, we will enter the “Exa-byte” 

era. Annual computing cost will increase by a 

factor of 10-20

• Without various innovations, the experiment 

will not be able to operate. The Graphical 

Processing Units (GPUs) and other state-of-the-

art technologies will be the baseline at the HL-

LHC. 

• Quantum computing will also likely bring 

another “leap”.
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• Two of the highly CPU consuming components: (1) track reconstruction for both 

data/simulation & (2) simulation of shower development in the calorimeter. 

• Tackling these challenges will also be useful for future colliders, such as CEPC.



Collaborative Projects w/ DESY

• Visited DESY last month to seek for collaborations on quantum computing.

• We have agreed to collaborate on two quantum machine learning 

projects. 

1. Quantum ML-based (e.g. GNN) tracking

• DESY: Federico Meloni et al.

• From IHEP: Hideki Okawa et al. 

• We may start having “group” meetings in the coming weeks. 

2. Quantum GAN for fast calorimeter simulation

• DESY: Kerstin Borras et al.

• IHEP: Hideki Okawa, Weidong Li, Xiaozhong Huang, Fazhi Qi’s future postdoc, 

• BAQIS: Zheng-An Wang, Zhipeng Yang for quafu support
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Previous Talk



Tracking
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Track Reconstruction

• Measuring curvature of particle trajectory bent in a magnetic field will provide momentum. 

• Particle trajectory (track) will be reconstructed from hits in the silicon detectors (have many 

irrelevant hits from secondary particles)
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Track Reconstruction at LHC & HL-LHC

• At the HL-LHC, additional interactions per bunch 

crossing becomes exceedingly high & CPU time 

blows up with more pileup.

• GPU & ML-based approaches are considered as a 

baseline, but quantum may play an important role. 
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Run 1 Run 2 HL-LHC

µ 21 40 150-200

Tracks ~280 ~600 ~7-10k

ATL-PHYS-PUB-2019-041
https://cds.cern.ch/record/1966040



Classical Benchmark: Kalman Filter

• In high energy collider 

experiments, Kalman Filter 

technique (e.g. implemented in 

A Common Tracking Software 

[ACTS]) has been often used 

as a standard algorithm.

• Seeding from the inner layers, 

extrapolated to predict the next 

hit & iterated to find the best 

quality combination.
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From ACTS website

https://acts.readthed

ocs.io

https://acts.readthedocs.io/
https://acts.readthedocs.io/


Graph Neural Network

• Active developments on the ML approach, 

especially using the graph neural network (GNN). 

• Silicon hits can be regarded as “nodes” & 

connected segments as “edges”

• Computing time scales linearly with # of tracks
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Daniel Murnane

Cenk Tueysuez



Quantum Approach: QUBO

• Triplets (segments w/ 3 hits) are formed from doublets (segments w/ 2 hits).

• Triplets are used to reconstruct tracks & can be regarded as a quadratic unconstrained 

binary optimization (QUBO) problem.

• Minimizing QUBO is equivalent to searching for the ground state of the Hamiltonian.
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Quality of 

triplets
Compatibility 

b/w triplet pairs

bij = 0 (if no shared hit)

= 1 (if conflict)

= -Sij (if two hits are shared)

F. Bapst et al. Comp. Soft. 

Big Sci. 4 (2019) 1.



Quantum Annealing Approach
• Quantum annealer is a natural machine to search for the ground state of a Hamiltonian. D-

Wave currently provides 5000+ qubit service (7440 qubits may be available in 2023-2024).

• Pros: High number of qubits available (though its concept fundamentally different from gate-

based machines). 

• Cons: Limited options to access the actual computer.

• Simulator studies can be pursued at the IHEP platform 
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F. Bapst et al. Comp. Soft. Big Sci. 4 (2019) 1.

• Previous studies w/ 1000-

qubit machine show that 

efficiency is almost stable w/ 

# of particles, but purity 

degrades. 

• Simulator provides consistent 

results w/ hardware



QUBO w/ VQE

• QUBO can be mapped to Ising Hamiltonian and be solved using 

Variational Quantum Eigensolver (VQE). → Can run on quantum-

gate computers.
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• TwoLocal ansatz w/ RY gates & circular CNOT entangling pattern were 

considered in L.Funcke et al., https://arxiv.org/abs/2202.06874



Sub-QUBOs

• Number of required qubits is determined by the number of triplet 

candidates → Obviously cannot cover the full QUBO in the NISQ era

• QUBO is split into sub-QUBOs of size N (N=7 in arXiv:2202.06874)
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Previous Results from LUXE

• Tracking successfully ran w/ quantum & 

classical benchmarks

• Classical GNN performance is limited 

by the training dataset size

• Room for improvement for both GNN & 

quantum tracking (optimization ongoing)
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L.Funcke, T.Hartung, B.Heinemann, K.Jansen, A.Kropf, S.Kühn, 

F.Meloni, D.Spataro,C.Tüysüz,Y.C.Yap, https://arxiv.org/abs/2202.06874

Field intensity parameter



Near Future Plans
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• We definitely need high-qubit machines for tracking studies                              

→ We are interested in quafu (in particular,136-qubit machine)

• Currently discussing the test circuit & dataset. Should be available pretty soon. 

• Then we will start implementing on quafu. 

• Try on publicly available tracking sample or HL-LHC/CEPC 

simulation. 

• Gang Li suggested to use Delphes for the 4th detector concept

• (Also consider quantum annealers?)

• Try quantum GNN as well as look into new algorithms 



Q-GAN
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Quantum GAN

H. Okawa IHEP ML Innovation Group Meeting 16

• HL-LHC will require enormous computing resource.  Already in Run 2, ~40% of the CPU 

is consumed by MC simulation. (Complicated accordion geometry in EM calo)

• e.g. 80% of the total simulation time taken by the shower development in the calo for ttbar events.  

• Classical GAN is partially used in fast sim (Atlfast3), but is still time consuming                                 

→ Quantum GAN may be able to reduce the training time & improve the accuracy. 

• Currently testing two approaches: (1) hybrid of quantum generator & classical 

discriminator (→for NISQ era), (2) full quantum version of generator & discriminator



Previous Studies
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• Final goal is to generate highly granular 3D energy distributions, but they 

have been simplified to coarse 1D or 2D distributions due to the limited number of 

qubits as well as to develop algorithms starting from simple cases. 

• So far, DESY has mostly worked on simulation-based studies using qiskit. 



Quantum GAN w/o Noise (Simulator)
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• Training time ~ 1 day for 3000 epochs

• Hyperparameter optimizations: higher learning rate, implement exponential learning rate 

decay, different generator and discriminator learning rates, train discriminator more often 

than generator

• Led to 10 times speed up in training → ~300 epochs is sufficient

F. Rehm, S. Vallecorsa, K. Borras, D. Krücker 

http://symsim.jinr.ru/grid2021/363-368-paper-67.pdf



Quantum GAN w/ Noise (Simulator)
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• Two noise conditions 

considered 

1. Readout noise only (IBMq

belem model) 

2. Readout + gate noise

• No decrease in accuracy & 

fast convergence for both

F. Rehm, S. Vallecorsa, K. Borras, D. Krücker 

http://symsim.jinr.ru/grid2021/363-368-paper-67.pdf

Readout noise only 

Readout + gate noise 



Noise Mitigation Studies
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• Two noise mitigation techniques considered (1) bit-flip (BF) [M is 

2nx2n matrix] & (2) independent bit-flip (IBF) [M is tensor product 

of each MN; assumes uncorrelated multi-qubit readout errors]

• Converges well w/ readout errors only, but two-qubit gate errors 

prevents convergence

K.Borras,S.Y.Chang,L.Funcke,M.Grossi,T.Hartung,K.Jansen, 

D.Kruecker,S.Kühn,F.Rehm, C.Tüysüz,S.Vallecorsa https://arxiv.org/abs/2203.01007

p01, p10: bit-flip probability



Quantum GAN in 2D (Simulator)
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• Down sample to 8x8 pixels → 6 qubits

• Tree Tensor Network classifier 

considered

• Training lasted for over 6000 epochs    

(> 5 days) & is unstable

F. Rehm, S. Vallecorsa, K. Borras, D. Krücker 

http://symsim.jinr.ru/grid2021/363-368-paper-67.pdf



Near Future Plans for Quantum GAN
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• Use a common dataset (CLIC) for DESY/IHEP collaboration → i.e. 

independent from ATLAS/CMS etc.

• Cope w/ gate noise → needs further investigations

• Need to proceed step by step from simplified cases (1D→2D→3D).

• After all, the final target is highly granular 3D distributions.                                        

→ Interested in high-qubit machines (e.g. quafu)

• Zheng-An Wang (BAQIS) is currently helping us to implement Q-GAN in quafu

• Also check full quantum GAN in addition to quantum-classical hybrid? 

(maybe long-term?)



Summary

• Presented some previous studies on the quantum tracking & 

GAN in high energy physics (especially those relevant for our 

research plans). 

• Two collaborative projects with DESY are ramping up. 

• Quafu implementation under way. 

• It would be really interesting to iterate on the actual high qubit 

machines & could be a unique opportunity in China. 
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Backup
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LUXE

• LUXE (Laser Und XFEL Experiment)

• QED studies under the strong-field regime (i.e. non-perturbative)

• Exploits European XFEL electron beam and high-power laser

H. Okawa IHEP ML Innovation Group Meeting 25

L.Funcke, T.Hartung, B.Heinemann, K.Jansen, A.Kropf, S.Kühn, 

F.Meloni, D.Spataro,C.Tüysüz,Y.C.Yap, https://arxiv.org/abs/2202.06874



Tracking at LUXE
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L.Funcke, T.Hartung, B.Heinemann, K.Jansen, A.Kropf, S.Kühn, 

F.Meloni, D.Spataro,C.Tüysüz,Y.C.Yap, https://arxiv.org/abs/2202.06874

• Ongoing tests on classical GNN w/ more training data

• Looks promising so far



Classifier in Quantum GNN
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From Cenk Tueysuez



Quantum Edge Network
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From Cenk Tueysuez



Quantum Node Network
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From Cenk Tueysuez



Training in Quantum GNN
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From Cenk Tueysuez
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