$$V(\vec{r}) = \frac{1}{r} \sum_{l,m} b_{lm} \frac{1}{r^{1}} Y_{lm}(\theta, \theta)$$
spherical harmonics
$$= \frac{1}{r} \sum_{l,m} c_{lm}(\frac{\alpha}{r})^{l} Y_{lm} \qquad b_{lm} \equiv c_{lm} \alpha^{l}$$

$$c_{0,lm} = c_{0,lm} = c$$

· After truncating the series (thraning away terms with (>(max) there are a finite number of purameters. If we make enough measurements we can constrain all purameters. (Cim) • To precisely determine the values of Cim we can either make very precise measurement at large & (low energy) make measurements at small r (high energy) energy vs. precision (or both!) Important aspects for colliders. If $r \approx a$, the expansion breaks down! r. (a.)) multiple scales [-ligh energy is charge god, but EFT may not be valid !

example 2 Fermi's theory mnon de cay $\mathcal{N} = \left(\frac{-ig}{f_{\Sigma}}\right)^{2} \left(\overline{\mathcal{V}}_{m} \mathcal{S}^{m} \mathcal{M}_{L}\right) \left(\overline{\mathcal{e}}_{L} \mathcal{S}^{U} \mathcal{V}_{e}\right) \cdot \frac{-ig_{uv}}{p^{2} - \mathcal{M}_{u}^{2}}$ $\mathcal{N} = \left(ig_{nore} \quad w \quad width \quad since \quad p^{2} \mathcal{L}(\mathcal{M}_{u}^{2})\right)$ $\stackrel{ig_{uv}}{=} \frac{1}{f_{\Sigma}} \left(\overline{\mathcal{V}}_{e} \quad (ig_{nore} \quad w \quad width \quad since \quad p^{2} \mathcal{L}(\mathcal{M}_{u}^{2})\right)$

For
$$p^{2}(\ell M_{uv}^{2})$$
, we can expand the operator

$$\frac{1}{p^{2}-M_{uv}^{2}} = -\frac{1}{M_{uv}^{2}}\left(1+\frac{p^{2}}{M_{uv}^{2}}+\frac{p^{4}}{M_{uv}^{2}}+\cdots\right)$$
Keeping only the 1st term we have
 $iM = \frac{-ig^{2}}{2M_{uv}^{2}}\left(\overline{\nu}_{m}\gamma^{m}M_{u}\right)\left(\overline{e}_{L}\gamma_{m}\nu_{e}\right) + O\left(\frac{1}{M_{uv}^{2}}\right)$
 q -fermin
 m (in tact interaction
 d -fermin $\frac{\nu}{e^{-}}$
which can be produced by the local Lagrangian
 $J = -\frac{g^{2}}{2M_{uv}^{2}}\left(\overline{\nu}_{m}\gamma^{m}M_{u}\right)\left(\overline{e}_{L}\gamma_{m}\nu_{e}\right) + O\left(\frac{1}{M_{uv}^{2}}\right)$
 d -intension- b operator, what Fermi wrote dawn.
 $EFT: \times \sim \frac{E^{2}}{\Lambda^{2}}(n-m_{uv})$, breaks down at large E !
If we keep more terms in the Lagrangian we'll generator
higher dimensional operators, eg. the $\frac{1}{M_{uv}}$ term corresponds
to dimension to use on-shell amplitudes!

This is the simplest example of the matching between the full model (SM) and the low-energy effective field theory (Fermi's theory).

- For $p^2 \ll M_W^2$, the 4F operator gives a very good approximation of the full theory. This is the case for mum decay. $(p^2 \ll m_m^2 - 10^6)$
- The coefficient of the 4F operator is $-\frac{g^2}{2m_w^2} \sim \frac{1}{v^2}$. Measuring muon decay only tells us the value of v $(or G_F = \frac{1}{5z}v^2)$ but not Mw, which depends on g.
 - · Mu is the scale at which the EFT breaks down!

$$\frac{1}{p^{2}-m_{w}^{2}} = -\frac{1}{m_{w}^{2}} \left(1 + \frac{p^{2}}{m_{w}^{2}} + \frac{p^{4}}{m_{w}^{4}} + \dots\right)$$

breaks down at $p^{2} - m_{w}^{2}$!
In air world, $g \approx 0.65$.
If g is { vory small, w, \geq would be much lighter
lef g is { vory small, w, \geq would be much lighter
(but if $g \geq 4\pi$, the theory becomes non-porturbative)

- In this simple example, if we also measure the dim-8 coefficient $\left(-\frac{9^2}{M_{\pi}^4}\right)$ we can derive the W mass In more complicated cases (with multiple heavy particles) it is in general not possible.
 - · global from

a complex scalar EFT (with U(1) symmetry) example 3 (botton ng)) $\mathcal{L} = \partial_{m} \phi^{*} \partial^{m} \phi - m^{2} |\phi|^{2} - \frac{\lambda}{4} |\phi|^{4} \quad [6] \leq 4$ $+ \sum_{i} \left(\frac{C_{i}^{(F)}}{\Lambda} \right) C_{i}^{(S)} + \sum_{i} \left(\frac{C_{i}^{(G)}}{\Lambda^{2}} \right) C_{i}^{(G)} + \sum_{i} \left(\frac{C_{i}^{(G)}}{\Lambda^{3}} \right) C_{i}^{(G)} + \cdots$ Thas dimension 4-1 $[2] = 4, [6^{(n)}] = n, [c] = 0, [\Lambda] = 1$ A - scale of the new physics (mars of the new particles) Large $\Lambda \Rightarrow$ The EFT expansion is good.

Operators in 2 are divided into 3 Classes based on their mass dimensions (cupling dimension [6]<4 rele van t |¢1 >0 [6] = 4 marginal 20 1414 [6] >4 irrelevant <0 EFT breaks down at high energy! with [0]>4, the theory (annot be a complete theory =) why it's called on EFT. Now let's try to write down the higher dim. operators Each (in) need to be invariant under ((1) symmetry.

Large $\Lambda \Rightarrow$ leading contribution: $O_i^{(6)}$
Bottom-up approach : write down all possible Or
Not all of them are independent!
Operator redundancy
Operators are related by
· Integration by parts (IBP)
 Integration by parts (IBP) Equation of Motion (EOM) why EoM norks beyond the classical level Fierz identity (more generally, field redefinition)
Let's try to write down all possible d6 operators: 1416
$(\mathcal{J}^{n} \mathcal{J}^{*}_{\mathcal{J}^{n}} \mathcal{J}) \mathcal{J}^{*}_{\mathcal{J}^{n}} \mathcal{J}, (\mathcal{J}^{n} \mathcal{J}_{n} \mathcal{J}^{*}) \mathcal{J} \mathcal{J}^{*}_{\mathcal{J}^{n}} \mathcal{J}, \mathcal{J}^{*}_{\mathcal{J}^{n}} \mathcal{J}^{*}_{\mathcal{J}^{n}$
$(\partial^m \partial_m \phi^{*})(\partial^\nu \partial_\nu \phi)$,
only [indep operator

 \square total derivative IBP: - $(\partial^{\mathbf{m}}\partial_{\mathbf{m}}\phi^{*})(\partial^{\mathbf{v}}\partial_{\mathbf{v}}\phi) = (\partial^{\mathbf{m}}\left[(\partial_{\mathbf{m}}\phi^{*})(\partial^{\mathbf{v}}\partial_{\mathbf{v}}\phi)\right]$ - dnd* Jn Jud, ¢

EOM:

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{m} \frac{\partial \mathcal{L}}{\partial (\partial_{m} \phi)} = 0 \qquad (\phi \leftrightarrow \phi^{*})$$

$$-m^{2} \phi^{*} - \frac{\lambda}{2} \phi^{*} \phi^{*} \phi - \partial_{m} \partial^{m} \phi^{*} + \cdots = 0$$

$$\partial_{m} \partial^{m} \phi^{*} = -m^{2} \phi^{*} - \frac{\lambda}{2} \phi^{*} \phi^{*} \phi + \cdots$$

$$\partial_{m} \partial^{m} \phi = -m^{2} \phi - \frac{\lambda}{2} \phi \phi \phi^{*} + \cdots$$

$$L_{\Lambda^{2}}(\partial^{m} \partial_{m} \phi^{*}) \phi \phi^{*} \phi \qquad d \geq g \text{ ignore}$$

$$= -\frac{(m^{2} |\phi|^{d} - \frac{(\lambda)}{\Lambda^{2}} |\phi|^{6} + \cdots$$
We can eliminate $(\partial^{n} \partial_{m} \phi^{*}) \phi \phi^{*} \phi \text{ in four of } |\phi|^{6}$

$$(\partial^{n} \partial_{m} \phi^{*}) (\partial^{n} \partial_{\nu} \phi)$$

total derivative $\partial^{n}((\partial_{n}\phi^{*})\phi^{*}\phi^{*}\phi)$ $= (\partial^{n} \partial_{n} \phi^{*}) \phi \phi^{*} \phi$ $+2(\partial_n\phi^{\chi}\partial^n\phi)\phi^{\chi}\phi$ $+ \left(\left(\partial_n \phi^* \right) \phi \right)^2$ $t(\partial_n \phi^*) \phi \phi^* (\partial_n \phi)$ (an eliminate 2 independent de operators! We can chuse 1416, 1412 and x and This is called choosing a basis. (choose which redundant operators to eliminate) Of course we can choose a different basis. My not just keep redundant operators? < convenience global fit & Physics are basis - independent. Physicists are basis - dependent! HEFT Norskshop 01, 67

- rest of & theory - 2#2 share? - SMEFT - phenomenology? $\begin{aligned} \mathcal{L} &= \partial_{n} \phi^{*} \partial_{n} \phi - m^{2} |\phi|^{2} - \frac{\lambda}{q} |\phi|^{4} \\ &+ \frac{C_{1}}{\Lambda^{2}} |\phi|^{6} + \frac{C_{2}}{\Lambda^{2}} |\phi|^{2} \partial_{n} \phi^{*} \partial_{n} \phi + \cdots \\ \uparrow \\ field redefinition \\ \phi \rightarrow \phi + \partial_{1} \frac{\phi^{*} \phi \phi}{\Lambda^{2}} + \partial_{2} \frac{\partial_{n} \partial^{*} \phi}{\Lambda^{2}} \quad dres not change \\ kinetic, mass terms \\ complex? \end{aligned}$

 $\frac{(\partial^2 \phi)^2}{\langle \varphi^4 \rangle} = \frac{\langle \varphi^4 \rangle}{\langle \varphi^4 \rangle}$

 $\frac{1}{p^{2}(1+\frac{p^{2}}{2})} = \frac{1}{p^{2}}\left(1-\frac{c}{2}\right)^{2}$

correct argument: We only work up to a fixed order in the EFT expansion and discurd all higher order terms

 $\sim \frac{1}{\lambda^4}$

$$SIMEFT$$

$$L_{SIMEFT} = L_{SIN} + Z (I'') O_{i}^{(S)} + Z (I'') O_{1}^{(G)} + Z (I'') O_$$

& K effects are usually strongly constrained (e.g. proton decay). Assuming B, L are conserved around the TeV scale

$$\mathcal{L}_{SINEFT} = \mathcal{L}_{SN} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(8)} + \cdots$$

Hilbert series: Murayana etal. 1512.03433

Warson basis 1008.4884

· first to write down a complete d6 basis

· try to eliminate operators with more derivatives in favor of operators with more fields.

Buchmüller & Wyler almost did it in 1986 (why ho one completed) it in 24 years?)

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$			$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^{\dagger} arphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right $
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^{\dagger} au^{I} arphi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi ud}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight.$	$^{T} u_{r}^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu} \qquad \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_{pj}^{\alpha j})^T C q_r^{\beta k} \right] \left[(h_s^{\gamma})^T C e_t \right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq} \qquad \varepsilon^{\alpha\beta\gamma} \mathcal{J}_{jn} \varepsilon_{km} \left[(q_p^{\alpha j})^T C q_p^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{duu} \qquad \qquad \varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$			/	1 /

4+3+3

8×3

briefly explain each type of cheraturs...

5+7+8

ollerators

1) (transverse) anomalous triple gauge coupling aTGC & (quertic GC) aGGC 2) $\varphi(\rightarrow) \downarrow ||1|^6 \rightarrow h^3 \mod h^3 Rh^4$ (all-12) mility and and , h have function renormalization shift Higgs couplings 3) y² q³ -> modify Yukawa conpling (relation between m & y) 4) $|H|^2 V_{m\nu} V^{m\nu} \leq h V_{m\nu} V^{m\nu} = -\zeta$ $h h V_{m\nu} V^{m\nu} = -\zeta$ different from h 2m2n hwww. 5) HAV dipde V^{nv} f_L real magnettic F_R inginary electric 6) 1-7 ~ () 1/-7) 4/ interaction modifies SM VIJ coupling contact interaction

3 generations: 2499 parameters! (many of them are 4f operators)

In other bases, we sometimes keep aperators with more derivatives.

E.g.
$$(b_{2w} = -\frac{1}{2} (D^{n} W_{nv}^{\alpha})^{2} (b_{2g} = -\frac{1}{2} (\partial^{n} B_{nv})^{2})^{2}$$

useful in describing universal contributions to 4f interactions.
 $(D_{Hw} = ig(D^{n}H)^{\dagger} G^{\alpha} (D^{\nu}H) W_{nv}^{\alpha}$
 $D_{Hg} = ig'(D^{n}H)^{\dagger} (D^{\nu}H) B_{nv}$
 $(longitudinal)$
useful for describing anomalous triple gauge couplings
 $(aTGc_{s})$

$$\frac{1368.2627}{1310.4838} \quad Alasso, Jonkins, Manchar, Trett
running couplings (=) resum large logs
tree level calculation + running couplings give
a reasonably accurate prediction.
Suppose ver $\rightarrow 0$, $[9sn] = 0$
Let $C_{i}^{(6)} = \frac{C_{i}^{(6)}}{\Lambda^{2}}$ $[C_{i}] = -2$

$$\frac{d6}{d6} RGE = R_{Ci} = m \frac{1}{2} M C_{i} = rij C_{j}$$

$$\frac{Still holds!}{convolution}$$
This is the only form allowed by diversimal analysis!
Hav about $ver \neq 0$?
 C_{i} contribute to $\beta_{ssn} = M \frac{1}{2} g_{sn} = -1 + riv^{2}C_{i} g_{sn} + \cdots$
 $C_{i}^{2} C_{i}^{(6)}$ contribute to $\beta C_{i}$$$

(d& RGEs are more complicated.)

Solve RGE. It expand to list loop order (not resimmed)

$$C_i(M) = C_i(M_0) + \log \frac{M_0}{M_0} r_i C_i$$
 improve to
 $resum !$
 $resum !$
 $resum !$
 $resum !
 $resum !$
 $resum !
 $resum !$
 $resum !
 $resum !
 $resum !$
 $resum !
 $resum ing$
 VV
 $resum ing$
 V
 $resum ing$
 $resum ing$
 $resum ing$
 $resum ing !
 $rum ing$: Operatures not generated at matching scale can be
generated at a longer scale via running !
 $rum ing$: $resum ing$: $resum ing$!
 $rum ing$: $resum ing$: $resum ing$!
 $rum ing$: $re$$$$$$$$$$$$$$$

Phenomenology expand in terms of $\frac{1}{\Lambda}$

- - - - .

(db² & ds are formally) in distinguishable

Higher dimensional aperaturs can con	tribute to M, T, which oppears
in dinominators 1 P-m2-im7	
(or just expand !)	
$G \sim M ^2$	

We can transate G at collider $\frac{1}{\Lambda^2}$ is a very good approximation if $V < C \wedge$ $(|+\chi)^2 \simeq |+2\chi$ if x is very small! 1 strictly speaking need to calculate d8 what if Air at that tange shall we keep dt 2

(1 lobal fit (simplest case)

G→X for cross section we'll now use G to denote the standard deviation!

suppose we measure a set of Xn S, each has a Gaussian error (Possion large Nlimit)

 $\Rightarrow \chi^{2} = \sum_{ij} \left(\left(\left(- \left(- \frac{0}{i} \right) \right) \left[- \frac{0}{ij} \right]_{ij} \left(\left(- \frac{0}{j} \right) + \chi^{2}_{min} \right) \right)$ $5^{-2} \equiv (5\vec{c} \cdot \vec{p} \cdot \vec{s} \cdot \vec{c})^{-1}$ inverse covariance matrix : best-fit values : one-signa precion, Pij: correlation matrix results of the Global fit OX² gives a measure of the "goudness ffit". fixed ox and and continue of Ci = ellipses! Imagine this in n-dimensional (2purameter space ((2), (3))project to 6x2=1 C,0 $C_{1}^{-} - SC_{1}$ $C_{1}^{\circ} + SC_{1}$ Beyond 1/2 => not (roustion anymore!