Physics with Future e+e- Colliders: Inter-frontier Connections

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

Friends

My pronouns: he/him/his # MeToo

CEPC International Conference, Nanjing, October 23, 2023

Goals for this Talk: What I Won't Do

• Reiterate the "familiar story"

CEPC Snowmass Report

The Physics potential of the CEPC

Prepared for the US Snowmass Community Planning Exercise

(Snowmass 2021)

CEPC Physics Study Group

	Contributors
	Abstract
I.	Executive Summary
II.	Introduction
III.	Higgs, EW and top physics
	A. Measurements of the SM Higgs processes
	B. Higgs coupling determination
	C. CP violation in the Higgs couplings
	D. W, Z electroweak precision measurements at the CEPC
	E. Measurement of the $e^+e^- \rightarrow WW$ process
	F. SMEFT global fit of Higgs and electroweak processes
IV.	Flavor Physics
	A. Precise Measurements of Flavor Physics Parameters
	B. (Semi)leptonic and Rare Decays
	C. Low multiplicity and τ Physics
v.	Beyond the Standard Model Physics
	A. Higgs Exotic Decays
	B. Supersymmetry
	1. Light electroweakino and slepton searches

CONTENTS

	2. SUSY global fits	33
	C. Dark Matter and Dark Sector	35
	1. Lepton portal Dark Matter	35
	2. Asymmetric Dark Matter	36
	3. Dark sector from exotic Z decay	37
	D. Long-lived Particle Searches	40
	1. Results with Near Detectors	40
	2. Results with FADEPC	41
	E. A couple more examples of exotics	44
	1. Heavy neutrinos	45
	2. Axion-like particles	47
VI.	Detector requirements and R&D activities	48
VII.	Message to the Snowmass	52
	References	52

Goals for this Talk: What I Won't Do

- Reiterate the "familiar"
- Report on incremental physics updates since the last CEPC meeting & Snowmass white paper
- Provide a menu of new processes and observables to put on the CEPC "bucket list"

Goals for this Talk: What I'll Try to Do

- Challenge us to think more deeply and broadly about implications of e+e- physics for other fundamental physics frontiers
- Illustrate a subset of these connections drawn from my own scientific experience
- Highlight developments in other sub-fields of fundamental physics that may bear on CEPC inter-frontier connections
- Invite discussion, other ideas, and future explorations

Key Ideas for this Talk

- Scalar fields play a significant theoretical role in the physics of other frontiers → an e+e- Higgs factory provides a unique inter-frontier laboratory
- The next generation e+e- colliders live at the interface of the high energy and "intensity" frontiers
 → the large number of H and Z bosons make the CEPC/FCC-ee/ILC precision tools at this interface
- The theoretical interpretation of these precision e+e- measurements can connect early universe cosmology, astrophysics, underground science, and "table top" condensed matter and AMO physics

Disclaimer

- Apologies for omissions of references to other important work
- Focus will be CEPC-centric but much of the discussion pertains to FCC-ee and ILC

Outline

- I. Questions & Frontiers
- *II.* Was there an electroweak phase transition ?
- *III.* What is the scale of lepton number violation ?
- IV. Outlook
- V. Where is the CP-violation needed to explain the matter-antimatter asymmetry ?

Time permitting

I. Questions & Frontiers

Fundamental Questions

Dark Matter Baryons **Dark Energy** ? fermion masses d⊷ s⊷ b∙ C● UH t• (large angle MSW) $v_1 \mapsto v_2 \bullet v_3$ e• μ• τ• μeV keV meV Mev GeV e۷ TeV

MUST answer

Origin of m_{ν}

SHOULD answer

Historical artifact: US HEP vision → still useful mnemonic

- Precision tests: muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

Historical artifact: US HEP vision → still useful mnemonic

- Precision tests:
 muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

- Atomic, Molecular, Optical
- Condensed Matter

- muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

Historical artifact: US HEP vision → still useful mnemonic

- Atomic, Molecular, Optical
- Condensed Matter

New Symmetries

- 1. Origin of Matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

New Symmetries

- 1. Origin of Matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

Fundamental symmetry & precision tests: draw inferences about BSM scenarios from a variety of measurements

New Symmetries

- 1. Origin of Matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

CRISTING STORE

New particle searches: does the observed BSM "species" fit the footprints ?

Fundamental symmetry & precision tests: draw inferences about BSM scenarios from a variety of measurements

New particle searches: does the observed BSM "species" fit the footprints ?

Fundamental symmetry & precsion tests: draw inferences about BSM scenarios from a variety of measurements

Nuclear Physics Connections

More Matter than Antimatter ?

Paradigmatic inter-frontier challenge

Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or
 CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Standard Model BSM

Fermion Masses & Baryon Asymmetry

Fermion Masses & Baryon Asymmetry

Cosmic History

Historical artifact: US HEP vision → still useful mnemonic

- Atomic, Molecular, Optical
- Condensed Matter

25

II. Was There an Electroweak Phase Transition ?

Was There an Electroweak Phase Transition ?

- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation

Thermal History of Symmetry Breaking

QCD Phase Diagram \rightarrow EW Theory Analog?

Was There an EW Phase Transition?

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ? SFOEWPT ?

Patterns of Symmetry Breaking

How did we end up here ?

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Was There an EW Phase Transition?

How did we end up here ?

 How reliably can we compute the thermodynamics ?

n evolve differently as T evolves → ilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm +} \ \ldots \label{eq:V}$$

First Order EWPT from BSM Physics

Generate finite-T barrier

Introduce new scalar *\phi* interaction with h via the Higgs Portal

 $M_{\phi} \lesssim 700 \text{ GeV}$ $h - \phi \text{ mixing: } | \sin \theta | \gtrsim 0.01$

First Order EWPT from BSM Physics

Generate finite-T barrier

Introduce new scalar *\phi* interaction Collider target with h via the Higgs Portal

- $M_{\phi} \lesssim 700 \ {
 m GeV}$
- $h-\phi$ mixing: $|\sin\theta| \ge 0.01$
BSM EWPT: Inter-frontier Connections

Gravitational Waves

Gravitational Waves

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

- One-step
- Non-perturbative

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

One-stepNon-perturbative

41

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Precision Higgs studies & resonant di-Higgs

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Precision Higgs studies & resonant di-Higgs

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Lattice Benchmarking

L. Niemi, MRM, G. Xia in 2311.NNNN

*M*_{h2} = 350 GeV

Lattice Benchmarking

L. Niemi, MRM, G. Xia in 2311.NNNN $M_{h2} = 350 \text{ GeV}$ 1-loop 2.0 2 loop PT 2-loop lattice $\beta = 40$ Change in 1 loop PT ²1.5 condensate at $T_c \sim$ $\langle \phi_{\downarrow} \phi \rangle \sqrt{27} = 0.5$ Lattice: FOEWPT 0.5Lattice: Crossover 0.0 -0.20.20.0 0.1-0.1Future e⁺e⁻ $\sin\theta$

- When a FOEWPT occurs, 2 loop PT gives a good description
- Lattice needed to determine when onset of FOEWPT occurs
- Future precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble & Perelstein 0711.3018

Light Singlets: Exotic Higgs Decays

$h_2 \rightarrow h_1 h_1 \rightarrow 4b$

Global LHC update: Snowmass white paper 2206.08326

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206

Light Singlets: Exotic Higgs Decays

$h_2 \rightarrow h_1 h_1 \rightarrow 4b$

Global LHC update: Snowmass white paper 2206.08326

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206

Spontaneous Z₂ Breaking

Carena, Liu, Wang 1911.10206

Spontaneous Z₂ Breaking

Carena, Liu, Wang 1911.10206

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Non-Dynamical Real Triplet: One-Step EWPT

Non-Dynamical Real Triplet: One-Step EWPT

Non-Dynamical Real Triplet: One-Step EWPT

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

- 1 or 2 step
- Non-perturbative

Second step of 2-step • transition can be observable

Latent heat

 α

GW & EWPT Phase Diagram

BMA:
$$m_{\Sigma} + h \rightarrow \gamma \gamma$$

BMA': BMA + $\Sigma^{0} \rightarrow ZZ$

Friedrich, MJRM, Tenkanen, Tran 2203.05889

- Two-step
- EFT+ Non-perturbative

58

Gravitational Waves

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

Gravitational Waves

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

60

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

61

BSM EWPT: Inter-frontier Connections

First Order Phase Transitions

VOLUME 32, NUMBER 6

PHYSICAL REVIEW LETTERS

11 FEBRUARY 1974

First-Order Phase Transitions in Superconductors and Smectic-A Liquid Crystals

B. I. Halperin Bell Laboratories, Murray Hill, New Jersey 07974

and

T. C. Lubensky* Department of Physics and Laboratory for Research in the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19174

and

Shang-keng Ma[†] University of California at San Diego, La Jolla, California 92037 (Received 30 November 1973)

Abelian Higgs model (non-rel)

$$F\{\psi, \vec{\mathbf{A}}\} = \int d^3 r[a \,|\,\psi|^2 + \frac{1}{2}b \,|\,\psi|^4 + \gamma \,|\,(\nabla - iq_0\vec{\mathbf{A}})\psi\,|^2 + (8\pi\,\mu_0)^{-1}\sum_{i>j} (\nabla_j A_i - \nabla_i A_j)^2\,]. \tag{1}$$

 $\frac{1}{2\Omega} \frac{dF}{d|\psi|} = a |\psi| + b |\psi|^3 + q_0^2 \gamma |\psi| \langle A^2 \rangle_{\psi},$

$$\langle A^2 \rangle_{\psi} = 4 \mu_0 T_c \Lambda \pi^{-1} - (32\pi \gamma q_0^2 \mu_0)^{1/2} \mu_0 T_c |\psi|.$$

63

First Order Phase Transitions

VOLUME 32, NUMBER 6

PHYSICAL REVIEW LETTERS

11 February 1974

First-Order Phase Transitions in Superconductors and Smectic-A Liquid Crystals

B. I. Halperin Bell Laboratories, Murray Hill, New Jersey 07974

and

T. C. Lubensky* Department of Physics and Laboratory for Research in the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19174

and

Shang-keng Ma† University of California at San Diego, La Jolla, California 92037 (Received 30 November 1973)

Abelian Higgs model (non-rel)

$$F\{\psi, \vec{\mathbf{A}}\} = \int d^3 r[a \,|\,\psi|^2 + \frac{1}{2}b \,|\,\psi|^4 + \gamma \,|\,(\nabla - iq_0\vec{\mathbf{A}})\psi|^2 + (8\pi\,\mu_0)^{-1}\sum_{i>j} \,(\nabla_j A_i - \nabla_i A_j)^2\,]. \tag{1}$$

$$\frac{1}{2\Omega} \frac{dF}{d|\psi|} = a |\psi| + b |\psi|^3 + q_0^2 (|\psi| \langle A^2 \rangle_{\psi}) \qquad \langle A^2 \rangle_{\psi} = 4\mu_0 T_c \Lambda \pi^{-1} - (32\pi\gamma q_0^2 \mu_0)^{1/2} \mu_0 T_c |\psi|.$$
Cubic term \rightarrow barrier \rightarrow FO phase transition 64

First Order Phase Transitions

$$\frac{1}{2\Omega} \frac{dF}{d|\psi|} = a |\psi| + b |\psi|^3 + q_0^2 (|\psi| \langle A^2 \rangle_{\psi}) \qquad \langle A^2 \rangle_{\psi} = 4\mu_0 T_c \Lambda \pi^{-1} - (32\pi\gamma q_0^2 \mu_0)^{1/2} \mu_0 T_c |\psi|.$$
Cubic term \rightarrow barrier \rightarrow FO phase transition 65

III. What is the LN Violation Mass Scale ?

SM: B+L Not Conserved

B+L Anomaly

SM B+L Violation & Sphalerons

B+L Anomaly

SM B+L Violation & Sphalerons

Additional LN Violation: Questions

- Are there additional sources of LN violation at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

LNV Physics: Where Does it Live ?

Is the BSM LNV scale (associated with m_v) far above E_{WS} ? Near E_{WS} ? Well below E_{WS} ?

71

Lepton Number: v Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana
$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \underbrace{\overset{y}{\bigwedge} \bar{L}^c H H^T L}_{Majorana} + \text{h.c.}$$

Impact of observation

- Total lepton number not
 conserved at classical level
- New mass scale in nature A
- Key ingredient for standard baryogenesis via leptogenesis

NLDBD Experimental Horizons

- Global effort to deply "ton scale" expt's
 → 100 x better lifetime sensitivity
- Top priority for U.S. nuclear science

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

Impact of observation

- Total lepton number not
 conserved at classical level
- New mass scale in nature, A
- Key ingredient for standard baryogenesis via leptogenesis

LNV Mass Scale & *0vββ*-Decay

How can we determine the underlying LNV physics?

LNV Mass Scale & *0vββ*-Decay

The "Standard Mechanism"

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

"Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: Λ ~ 10¹² – 10¹⁵ GeV
- 3 light Majorana neutrinos mediate decay process

Ονββ-Decay: "Standard" Mechanism

Three active light neutrinos

LNV Mass Scale & *0vββ*-Decay

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but *0vββ*-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

High Scale LNV & Leptogenesis

High Scale LNV & Leptogenesis

Energy Scale (GeV)

Low Scale LNV & Leptogenesis

Low Scale LNV Probes

- New scalars (type II see saw)
- Heavy neutral leptons (sterile neutrinos...)

LNV: Scalar Fields & m_v

 $\partial \nu \beta \beta$ Decay, PV e⁻e⁻ \rightarrow e⁻e⁻, e⁺e⁻ \rightarrow e⁺e⁻ & pp collisions

G. Li, MJRM, S. Urrutia-Quiroga, J.C. Vasquez

LNV: Scalar Fields & m_v

 $\partial \nu \beta \beta$ Decay, PV e⁻e⁻ \rightarrow e⁻e⁻, e⁺e⁻ \rightarrow e⁺e⁻ & pp collisions

LNV Scalar Field & GW

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

90

BSM LNV: *0vββ*-Decay & pp Colliders

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

0νββ-Decay

pp Collisions

BSM LNV: *0vββ*-Decay & pp Colliders

Numerous studies: another talk...

92

Lepton Collider Probes

 $e^+ e^- \rightarrow Z^0 \rightarrow N N$ vs $e^+ e^- \rightarrow Z^0 \rightarrow N \overline{N}$

Lepton FB Asymmetry

A_{FB} : vanish for Majorana N

M. Drewes 2210.17110 (mini-review) Blondel, de Gouvea, Kayser 2105.06576

N Polarization

93

Lepton Collider Probes

 $e^+ e^- \rightarrow Z^0 \rightarrow N N$ vs $e^+ e^- \rightarrow Z^0 \rightarrow N \overline{N}$

Displaced decays (LLPs)

W Pair Production

LNV + CPV

$$\mathcal{A}_{CP} = \frac{Br(\ell^+\ell^- \to \mu^+\mu^+4j) - Br(\ell^+\ell^- \to \mu^-\mu^-4j)}{Br(\ell^+\ell^- \to \mu^+\mu^+4j) + Br(\ell^+\ell^- \to \mu^-\mu^-4j)}$$

IV. Outlook

Future e+e- Colliders: Frontier Interface

- The particle physics of an e+e- Higgs factory is compelling in its own right and the scientific opportunities of a next generation e+e- collider must be realized
- The large number of H and Z bosons make the CEPC/FCC-ee/ILC precision tools at the interface of the high energy and intensity frontiers
- There exist exciting opportunities for inter-frontier synergy on fundamental questions involving e+e- colliders and cosmology/astrophysics, nuclear physics, condensed matter and AMO physics → let's pursue these synergies vigorously and communicate the inter-frontier opportunities to our colleagues enthusiastically

Frontiers

- muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

Historical artifact: US HEP vision → still useful mnemonic

- Atomic, Molecular, Optical
- Condensed Matter

Back Up Slides I

V. Where is the CPV for Baryogenesis ?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF⁺	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 -30
HfF⁺	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -29
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 -30
HfF⁺	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -29
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity Challenge for EWB($sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$

M < 500 GeV \rightarrow sin ϕ_{CP} < 10⁻²

System	Limit (e	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	cm) 7.4 x 10 ⁻³⁰	10 - ³³	10 ⁻²⁹
HfF⁺	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
 - CPV is "partially secluded"

System	Limit (e	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	cm) 7.4 x 10 ⁻³⁰	10 - ³³	10 ⁻²⁹
HfF⁺	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

- CPV is flavor non-diagonal
 - CPV is "partially secluded"

Flavored EW Baryogenesis

Flavor basis (high T) $\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$ Mass basis (T=0) $CPV h \to \tau\tau$ $\frac{m_f}{v} \kappa_\tau (\cos \phi_\tau \overline{\tau} \tau + \sin \phi_\tau \overline{\tau} i \gamma_5 \tau) h$

Guo, Li, Liu, R-M, Shu 1609.09849 106

Flavored EW Baryogenesis

Flavor basis (high T) $\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$ Mass basis (T=0) $CPV h \to \tau\tau$ $\frac{m_f}{v} \kappa_\tau (\cos \phi_\tau \overline{\tau} \tau + \sin \phi_\tau \overline{\tau} i \gamma_5 \tau) h$

Guo, Li, Liu, R-M, Shu 1609.09849

107

Ge, Li, Pasquini, R-M, Shu 2012.13922

Higgs Portal CPV: EDMs

CPV & 2HDM: Type II illustration

 $\lambda_{67} = 0$ for simplicity

Inoue, R-M, Zhang: 1403.4257
Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

The Top Quark Portal

CPV Top Quark Interactions?

- 3rd generation quarks often have a special role in BSM scenarios, given m_t >> all other m_f
- If BSM CPV exists, d_t may be enhanced
- Top EDMs difficult to probe experimentally
- Light fermion EDMs to the rescue !

CPV Top Quark Interactions?

Cordero-Cid et al '08, Kamenik et al '12, Cirigliano et al '16, Fuyuto & MRM in 1706.08548

Model-indep: independent SU(2)_L & U(1)_Y dipole operators: C_{tB} , $C_{tW} \rightarrow$ Tree level d_t & loop level d_e , $d_{light q}$

Induced d_e , d_{light quark}

Fuyuto & MRM '17 Fuyuto '19: Updated for new ThO

CPV Top Quark Interactions?

Cordero-Cid et al '08, Kamenik et al '12, Cirigliano et al '16, Fuyuto & MRM in 1706.08548

Bordero-Clubert and the second of the seco

Induced d_e , d_{light quark}

Fuyuto & MRM '17 Fuyuto '19: Updated for new ThO

Back Up Slides II

T. D. Lee Institute / Shanghai Jiao Tong U.

Nuclear Physics Today

Hadron structure & dynamics: "cold QCD"

Rare isotopes: nuclear structure & astrophysics

Fundamental symmetries & neutrinos: "Intensity Frontier"

With rescaled and rescaled and

Relativistic heavy ions: "hot & dense QCD"

Nuclear Physics Today

Hadron structure & dynamics: "cold QCD"

Rare isotopes: nuclear structure & astrophysics

Fundamental symmetries & neutrinos: "Intensity Frontier"

Relativistic heavy ions: "hot & dense QCD"

119

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm +} \ \ldots \label{eq:V}$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

$$T_0 \sim 140 \; \text{GeV} \equiv T_{EW}$$

First Order EWPT from BSM Physics

loop effect

tree-level effect

tree-level effect 120

MJRM: 1912.07189

First Order EWPT from BSM Physics

MJRM: 1912.07189

First Order EWPT from BSM Physics

Strong First Order EWPT

Prevent baryon number washout

$$d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$

 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$
C. Seng arXiv: 1411.1476

BSM CPV: Electric Dipole Moments

Electron EDM experiment: on a table top

Neutron EDM experiment: a bigger "table"

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times |\sin\phi| \times y_f F$

CPV Phase: large enough for baryogenesis ?

$$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$$

BSM mass scale: TeV ? Much higher ?

v = 246 GeV Higgs vacuum expectation value A > 246 GeV Mass scale of BSM physics

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

BSM dynamics: perturbative? Strongly coupled?

У_f F Fermion f Yukawa coupling Function of the dynamics

- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier Energy Frontier Intensity Frontier

The Higgs Portal

Dark Photon Portal

Dark Photon Portal

New CPV ?

Dark Photon Portal

Thanks: K. Fuyuto

CPV Dark Photon

K. Fuyuto, X.-G. He, G. Li, MJRM 1902.XXXXX

CPV Dark Photon

CPV Dark Photon

