Progress of Linear Colliders: ILC/CLIC

Junping Tian (U. Tokyo)

Many thanks to Shinichiro Michizono & Steinar Stapnes for accelerator inputs

Talk is largely based on a combined talk given at ECFA HF Workshop 2022 by F. Simon & JT

2023 CEPC Workshop, October 23-27 @ Nanjing U.

Driving force of future e+e-

Perspective of Energy

Progress of Linear Colliders - CEPC WS, October 2023

Driving force of future e+e-

Perspective of Energy

Progress of Linear Colliders - CEPC WS, October 2023

collider energy targets:

Driving force of future e+e-

Perspective of Energy

Progress of Linear Colliders - CEPC WS, October 2023

	J. R. Reuter]	Thresholds and cross se collider energy targets:	ections s	set	
	91	.2 GeV - The Z pole	Precisio	on el	ectro
r-]	16	0 GeV - The WW threshold	Flavour	, QC	D,
	25	0 GeV - The ZH maximum	Higgs coupli	prop nas	oertie
•	35	0 GeV - The top threshold, VBF Higgs productio	n Top p Top a	rope s pro	erties, obe
).	50	0 GeV - ttH, ZHH	Direct t	op Y	′ukaw
10 eV]	00	• TeV - VBF double Higgs	Higgs s	selfc	ouplir
			Search	at tl	ne
10	00 E	E _{CM} / GeV	energy	fron	tier

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

weak,

Linear Colliders

ILC & CLIC specs

- Energy extendability to TeV scale lies in the heart of linear colliders: ILC focuses on √s from 250 GeV to 1 TeV; CLIC 380 GeV to 3 TeV; keeping options to run at Z-pole ("GigaZ")
- Complementary approaches: "Warm" & "Cold" accelerating technologies; 72MeV/m @ CLIC380; 31.5MeV/ m @ ILC250
- Polarized beams: both offering 80% for electron; 30% for positron in ILC default design

ILC250 ~ 20km

Progress of Linear Colliders - CEPC WS, October 2023

Linear Colliders

running scenarios for benchmark studies

[arXiv:2203.07622]

Progress of Linear Colliders - CEPC WS, October 2023

	380 GeV	1.5 TeV	3 TeV
∫L (ab-1)	1	2.5	5
P(e-,e+;%)	80/0	80/0	80/0
(LR,RL)	(50,50)	(80,20)	(80,20)

[arXiv:2203.07622]

ILC Accelerator Status

from mature to ready

- TDR published in 2013; progress steadily towards to final technology choice and engineering design; optimization to lower cost
- Key technology Status (RDR) SRF accelerating Nano-beam SRF cavity, CM Item Parameters QDELing

C.M. Energy	250 GeV		models.
Length	20km	e- source	
Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹	e+ source	Toch [
Repetition	5 Hz	Undulator scheme	Tech. L
Beam Pulse Period	0.73 ms	e-driven scheme	Tech.
Beam Current	5.8 mA (in pulse)	DR	De
Beam size (y) at FF	7.7 nm@250GeV		
SRF Cavity G.	31.5 MV/m	Final focus	De
\mathbf{Q}_{0}	(35 MV/m) Q ₀ = 1x10 ¹⁰	Dump	٦

Progress in Nano-beam Technology

Damping ring & Final focus

Progress of Linear Colliders - CEPC WS, October 2023

Progress in SRF Technology

~1.3 GHz worldwide SRF accelerators

European XFEL (in operation, 2017~)

800 cavities 100 CMs 17.5 GeV (Pulsed)

SHINE (under construction)

~600 cavities 75 CMs 8 GeV (CW)

Progress of Linear Colliders - CEPC WS, October 2023

ILC (planned)

8,000 9-cell cavities 900 CMs 2 x 125 GeV (Pulsed)

LCLS-II -HE (in commissioning)

-280+200 cavities -35+25 CMs - 4 +4 GeV (CW)

JLab-CEBAF(1.5 GHz) (in operation) 40 CMs 6~12 GeV(CW)

> **2,000** SRF cavities being realized!

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

ILC Facility News

Make more out of the beams

- Turn the beam dump into fixedtarget experiment: 4x10²¹/y electrons on target
- Dedicated detectors away from IP
- Accommodate strong QED experiment: Schwinger E-field (e+e- pair production from vacuum)
- Beam extraction for Nuclear or Material Science
- Under active discussion

[ILCX2021 workshop]

CLIC Accelerator Status

2021-2025

Focusing on:

- in small compact accelerators where immediate industrial readiness is needed
- Optimizing the luminosity at 380 GeV
- Improving power efficiency for both initial phase & high energies

CERN and Lausanne University Hospital collaborate on a pioneering new cancer radiotherapy facility

CERN and the Lausanne University Hospital (CHUV) are collaborating to develop the conceptual design of an innovative radiotherapy facility, used for cancer treatment

15 SEPTEMBER, 2020

X-band studies: For CLIC and applications in smaller linacs

> **RF efficiency and** sustainability studies

Progress of Linear Colliders - CEPC WS, October 2023

CLIC is working towards a Project Readiness Report 2025/26 as a step toward a TDR – for next ESPP

• X-band technology readiness for the 380 GeV CLIC initial phase — more and more driven by use

Luminosity: **Beam-dynamics** studies and related hardware optimisation for nano beams

Second accelerator Thermionic gun >100 keV X-ray energie >100 times higher brilliance 1.1.1.1.1.1.1.1.1.1.1.1.1

CLIC Accelerator Status

Extensive prototyping over the last ~5-10 years

Progress of Linear Colliders - CEPC WS, October 2023

The CLIC accelerator studies are mature:

Optimised design for cost and power

Many tests in CTF3, FELs, lightsources and test-stands

Technical developments of "all" key elements

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

ILC Project News

towards realization

- MEXT (represents Japanese government) didn't approve the original Pre-Lab proposal [newsline]
- Not entirely negative: pointed out what directions to move forward ["hosting is not the problem", S.Asai]
- Support to carry out time-critical R&D that was in the Pre-Lab proposal
- A really encouraging sign from this April: a fact of 2 increase on KEK funding for ILC R&D by MEXT
- ILC Technology Network (ITN) is launched: memorandum between KEK & CERN signed
- Promotion under leadership by International Development Team (IDT), KEK and ILC-Japan

What is the goal in spring 2023?

- The International Network for the ILC related technology development is ready to start or even has started.
- The International Expert Panel makes a significant advancement in the discussion for Step 1

[T.Nakada @ Snowmass 2022]

Step 1 Developing a path for a global project adoptable for the ILC: Step 2 Developing the ILC decision roadmap by adopting this path

ILC Promotion

Paradigm shift: from "international" to "global"

Global project: Starts and evolves as a collaborative project of partner countries who make collective decisions on all aspects of the project, such as the scheme for cost and responsibility sharing, project organisation, and host and site location. The ownership is shared among the partners.

International project: Initiated as a project of a laboratory with a limited international participation, a total of O(10~20%) of the accelerator, like HERA (started as a DESY project) and LHC (started as a CERN project). This fraction may become larger but the ultimate ownership remains with the initiator.

Our usual approach

Progress of Linear Colliders - CEPC WS, October 2023

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

Linear Colliders - New Players

ILC "backup"

- If ILC is not moving forward as expected...
- New linear collider proposals sited in US as discussed in Snowmass 2022

C³ Workshop 2022

[V.Sheltsev @ Snowmass 2022]

Progress of Linear Colliders - CEPC WS, October 2023

Must fit ~7 km including BDS Required gradients of at least 70MV/m Compact \rightarrow lower cost (wrt ILC/CLIC)

Option 1: <u>Cool Copper Collider (C³)</u>

5.7GHz 77K

Option 2: <u>HELEN</u> (Travelling Wave ILC)

Detector for Linear Colliders

lineup

- Only one IP at linear colliders; two detector concepts proposed for ILC with "push-pull" scheme
- prototyping and demonstrating by beam test; very close collaboration with CALICE, LCTPC, FCAL
- Current status are summarized in <u>ILD interim design report</u> and <u>Updating the SiD concept</u>
- [ILD2022] towards a strategy for ILD not only at ILC but also at other e+e-

similar performance; major difference in tracking volume, TPC vs Full Silicon;

Progress of Linear Colliders - CEPC WS, October 2023

• ILD and SiD concepts are very mature: Detailed Baseline Design (DBD) completed a decade ago; continuous

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

Detector Concepts

meet the requirements

- Key criteria: Particle Flow Algorithm (PFA), allowing a complete event reconstruction • High granular calorimeters in both electromagnetic and hadronic sections
- Very low material budget in the vertexing and tracking volumes

Progress of Linear Colliders - CEPC WS, October 2023

Track

Simulation Tools for Linear Colliders

ecosystem

- studies over a decade
- details in the detectors that may sensitively affect our projections of physics performance.
- *iLCSoft* is the common linear collider ecosystem that integrates core tools includes
 - LCIO, the common event data model
 - DD4HEP, detector description toolkit, including interface to GEANT4
 - like FastJet for jet-clustering

now integrated in key4HEP framework

• Linear colliders community has been leading the development of software tools for full detector simulation

• Given the very demanding performance required on detectors, it is very important to take into account all

[predecessor, Mokka] Marlin, C++ application framework, highly modularized to accommodate various event reconstruction tools: MarlinTrk for tracking; PandoraSDK for particle flow; LCFI+ for vertex finder and flavor tagging; and many more high level reconstruction algorithms

Simulation Tools for Linear Colliders

analysis flow

- being formal members of ILD/SiD
- MC production is done mostly on Grid using iLCDirac; significant experience gained on computing resources via a series of production campaigns over a decade

Progress of Linear Colliders - CEPC WS, October 2023

• Main event generator: Whizard, including full SM background contribution for a given process; Pythia, for parton shower and hadronization; Beam-beam interaction by Guinea-Pig; ISR and FSR all implemented • In addition to the main full detector simulation tools, fast simulation tools SGV and DELPHES cards are also used; there is also a lightweight access to the full simulation data through miniDST events without

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

Physics Analysis for ILC

cornerstone for making the physics case

New Particle searches, have been carried out to shape the physics case for ILC/CLIC.

• thanks to the advanced simulation tools, numerous physics analyses on Higgs/EW, top/heavy flavor, and

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

1%

Physics Analysis for ILC

unique role of 500 e+e-

hZZ vs. hhh in EW Baryogenesis

Progress of Linear Colliders - CEPC WS, October 2023

• $\lambda_{HHH} = \lambda_{SM}$ has profound effect on di-Higgs processes

• complementarity between ZHH & vvHH (& LHC): different interference

if λ_{HHH} / λ_{SM} = 2, λ_{HHH} be *discovered* (~13%) using ZHH at 500 GeV
 e+e-

Summary

- Linear colliders are competitive "Higgs Factories" with mature technologies
- ILC is entering a new phase with the realization of ILC Technology Network
 - promotion paradigm shift from "International" to "Global"
- CLIC is preparing a project readiness report for next ESP

ILC Technology Network "Global"

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

Summary

- Linear colliders are competitive "Higgs Factories" with mature technologies
- ILC is entering a new phase with the realization of ILC Technology Network
 - promotion paradigm shift from "International" to "Global"
- CLIC is preparing a project readiness report for next ESP

All recent strategy processes agree that the physics case for a detailed exploration of the Higgs and electroweak sectors is compelling - this requires a e⁺e⁻ Higgs-Top-Electroweak Factory We should work together to make (at least) one such facility a reality.

News & Input: Linear Higgs Factories - ECFA HF WS, October 2022

IDT Scope for ILC Realization

zenodo.4742018

contributions/52733/attachments/38998/61522/ Time-Critical WPsV8e.pdf

-success oriented and asuming no major incident-

Construction Phase ~10 years for the construction and commissioning

3	2029	2030	2031	2032	2033	2034	2035	• • •

ILC Technology Network (ITN)

- -- global collaboration program---
- Acc. R&Ds focusing on

 - e- & e+ Sources
 - Nano-beam

Synergy with other colliders

KEK obtained a budget for these R&Ds and started the activity from this April.

ILC Project News

current plan

Progress of Linear Colliders - CEPC WS, October 2023

Junping Tian (tian@icepp.s.u-tokyo.ac.jp)

ILC Project News

promotion scheme

Progress of Linear Colliders - CEPC WS, October 2023

CLIC Accelerator Status 2021-2025

X-band technology:

- Design and manufacturing of X-band structures and components
- Study structures breakdown limits and optimization, operation and conditioning
- Baseline verification and explore new ideas
- Assembly and industry qualification
- Structures for applications, FELs, medical, etc

Technical and experimental studies, design and parameters:

- Module studies
- Beamdynamics and parameters: Nanobeams (focus on beam-delivery), pushing multi TeV region (parameters and beam structure vs energy efficiency) • Tests in CLEAR (wakefields, instrumentation) and other facilities (e.g. ATF2)
- High efficiency klystrons
- Injector studies suitable for X-band linacs (coll. with Frascati)

Progress of Linear Colliders - CEPC WS, October 2023

Application of X-band technology (examples):

- A compact FEL (CompactLight: EU Design Study 2018-21)
- Compact Medical linacs (proton and electrons)
- Inverse Compton Scattering Source (SmartLight)
- Linearizers and deflectors in FELs (PSI, DESY, more)
- 1 GeV X-band linac at LNF Frascati

CLIC Detector

status and plan

Calorimeter R&D => within CALICE and FCAL Silicon vertex/tracker R&D:

A few examples:

Hybrid assemblies:

Development of bump bonding process for CLICpix2 hybrid assemblies with 25 µm pitch https://cds.cern.ch/record/2766510

Successful sensor+ASIC bonding using Anisotropic Conductive Film (ACF), e.g. with CLICpix2, Timepix3 ASICs. ACF now also used for module integration with monolithic sensors. https://agenda.linearcollider.org/event/9211/con <u>tributions/49469/</u>

Progress of Linear Colliders - CEPC WS, October 2023

Working Group within CLICdp and strong collaboration with DESY + AIDAinnova

Now integrated in the <u>CERN EP detector R&D programme</u>

Matured SRF technologies

Civil Engineering

ILC Site Candidate Location in Japan: Kitakami

Preferred site selected by JHEP community,

大船渡市

Ofunato

Kesen-numa 可否则反

気仙沼線

大島

Topography and geology assumed in civil engineering design of ILC

- Rock mass is generally uniform over a long distance of 50 km
- Solid rock zone is less susceptible to ground vibration

• No "known faults" crosses the site, which is expected to be active faults granite zone

- In the area of the accelerator tunnel, hard and uncracked granite is considered to be widely distributed.

Tohoku ILC Civil Engineering Plan https://tipdc.org/assets/uploads/2021/03/Tohoku_ILC_CEP.pdf

Seismic survey (total 30 km), electromagnetic survey (13 km), and borehole survey (7 boreholes) were carried out.

Main Linac (ML) tunnel

- 66 kV distribution cables \bullet
- **Cooling water pipes**
- Fan Coil Units
- Low power and signal cables \bullet
- **RF klystrons and modulators** \bullet
- **Electric Power Stations** \bullet

- 15 km in (e+e-) total
- Kamaboko 9.5m X 5.5m

follow the geoid in vertical

1.5m central radiation shield

Further optimization will be done.

• ML Cryomodules

RTML

• Low power and signal cables

Technology network phase

WP-Primes at <u>ILC</u> <u>Technology</u> <u>Network</u>

•Creating particles polarized elections / positrons •High quality beams •Low emittance beams •Small beam size (small beam spread) •Parallel beam (small momentum spread) Acceleration superconducting radio frequency (SRF) •Getting them collided •nano-meter beams

•Go to **Beam dumps**

Future upgrade

ILC Baseline and the Upgrades

Quantity	Symbol	\mathbf{Unit}	Initial	\mathcal{L} Upgrade	Z pole	E / 4	Upgrad	es
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000
Luminosity	\mathcal{L}	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	f_{rep}	$_{\rm Hz}$	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	N_e	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	Δt_b	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	\mathbf{mA}	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Accelerating gradient	G	MV/m	31.5	31.5	31.5	31.5	31.5	45
Average beam power	P_{ave}	$\mathbf{M}\mathbf{W}$	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	σ_z^*	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ_x^*	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	σ_y^*	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top $1~\%$	$\mathcal{L}_{0.01}/\mathcal{L}$		73~%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6~%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power *	P_{site}	\mathbf{MW}	111	138	94/115	173/215	198	300
Site length	L_{site}	\mathbf{km}	20.5	20.5	20.5	31	31	40

 AC plug-power may be further reduced (10 ~ 20 %), if the RF (Klystron) and SRF/ Cryogenics (Q-value) Efficiency may be improved.

Further energy upgrades can be realized by
Nb₃Sn cavity (>80MV/m)

Nb Traveling Wave (TW) structures
 (>70MV/m)

Nb₃Sn cavity for the future upgrade

Courtesy, S. Posen

A new concept for SRF proposed for ILC-3TeV and Helen: Traveling Wave (TW) SRF cavity, compared with Standing Wave

S. Belomestnykh^{†,1}, P. C. Bhat, M. Checchin[‡], A. Grassellino, M. Martinello[‡], S. Nagaitsev², H. Padamsee³, S. Posen, A. Romanenko, V. Shiltsev, A. Valishev, V. Yakovlev Fermi National Accelerator Laboratory, Batavia, IL, USA ¹also at Stony Brook University, Stony Brook, NY, USA ²also at University of Chicago, Chicago, IL, USA ³also at Cornell University, Ithaca, NY, USA

https://doi.org/10.48550/arXiv.2209.01074

Courtesy: H. Padamsee et al., for ILC-3TeV S. Belomestnykh et al., for HELEN

SW: TESLA cavity (ILC baseline)

TW: proposed for ILC-3TeV, Helen

>70 MV/m operation

- Green (acc.) and Blue (Return) Waves are Travelling Waves Lower peak fields,

A new concept for SRF proposed for ILC-3TeV and Helen: Traveling Wave (TW) SRF cavity, compared with Standing Wave

S. Belomestnykh^{†,1}, P. C. Bhat, M. Checchin[‡], A. Grassellino, M. Martinello[‡], S. Nagaitsev², H. Padamsee³, S. Posen, A. Romanenko, V. Shiltsev, A. Valishev, V. Yakovlev Fermi National Accelerator Laboratory, Batavia, IL, USA ¹also at Stony Brook University, Stony Brook, NY, USA ²also at University of Chicago, Chicago, IL, USA ³also at Cornell University, Ithaca, NY, USA

https://doi.org/10.48550/arXiv.2209.01074

Courtesy: H. Padamsee et al., for ILC-3TeV S. Belomestnykh et al., for HELEN

SW: TESLA cavity (ILC baseline)

TW: proposed for ILC-3TeV, Helen

>70 MV/m operation

- Green (acc.) and Blue (Return) Waves are Travelling Waves Lower peak fields,

The Compact Linear Collider (CLIC)

The CLIC accelerator studies are mature:

- Optimised design for cost and power
- Many tests in CTF3, FELs, light-sources and test-stands
- Technical developments of "all" key elements

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- **Compact:** Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- **Expandable:** Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.

Recent summary document: LINK (Snowmass)

Comprehensive Physics and Detector studies

CLIC energy upgrades – parameter overview

CLIC can easily be extended into the multi-TeV region (3 TeV studied in detail)

Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV

03.07.23

Table 1.1: Key parameters of the CLIC energy stages.

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	${ m GeV}$	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim\!\!60/1.5$	${\sim}40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

Cost - I

Machine has been re-costed bottom-up in 2017-18

- Methods and costings validated at review on 7 November 2018 – similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty estimated

Domein	Sub-Domain Injectors Damping Rings Beam Transport	Sub-Domain C		CHF]
Domain	Sub-Domain	Drive-Beam	Klystron	
	Injectors	175	175	
Main Beam Production	Damping Rings	309	309	
	Beam Transport	409	409	
	Injectors	584		
Drive Beam Production	Frequency Multiplication	379		
	Beam Transport	76		
Main Lines Medules	Main Linac Modules	1329	895	
Main Linac Modules	Post decelerators	37		
Main Linac RF	Main Linac Xband RF		2788	
Beem Delivery and	Beam Delivery Systems	52	52	
Beam Delivery and	Final focus, Exp. Area	22	22	
Post Comsion Lines	Post-collision lines/dumps	47	47	
Civil Engineering	Civil Engineering	1300	1479	
	Electrical distribution	243	243	
Infractructure and Services	Survey and Alignment	194	147	
infrastructure and Services	Cooling and ventilation	443	410	
	Transport / installation	38	36	
	Safety system	72	114	
Machine Control, Protection	Machine Control Infrastructure	146	131	
and Safety systems	Machine Protection	14	8	
	Access Safety & Control System	23	23	
Total (rounded)		5890	7290	

CLIC 380 GeV Drive-Beam based: 5890^{+1470}_{-1270} MCHF; CLIC 380 GeV Klystron based:

 7290^{+1800}_{-1540} MCHF.

Cost - II

Construction:

- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of ML)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of ML)
- Labour estimate: ~11500 FTE for the 380 GeV construction

Operation:

- 116 MCHF (see assumptions in box below)
- Energy costs
- 1% for accelerator hardware parts (e.g. modules).
- 3% for the RF systems, taking the limited lifetime of these parts into account.
- -5% for cooling, ventilation and electrical infrastructures etc. (includes contract labour and consumables)

These replacement/operation costs represent 116 MCHF per year.

Goals for the studies by ~2025-26, key improvements:

- reduction, system level studies
- Energy/power: 380 GeV well underway, 3 TeV to be done, L-band klystron efficiency ullet
 - In Snowmass report for 380 GeV
- Sustainability issues, more work on running/energy models and carbon footprint
 - Snowmass report
- X-band progress for CLIC, smaller machines, industry availability, including RF network
 - many smaller setup. No complete documentation in PiP 2018 or Snowmass report 2022.
- R&D for higher energies, gradient, power, prospects beyond 3 TeV

CERN

Links also to power, nanobeam and beamdynamics

Cost update, only discuss changes wrt Project Implementation Plan in 2018

• Luminosity numbers, covering beam-dynamics, nanobeam, and positrons - at all energies. Performance risk

• Substantial progress already documented in Snowmass report and associated references, remains a focus for beamdynamics, nanobeam related technical developments and positron production studies

• Life Cycle Assessment, Initial studied in Project Implementation Plan (PiP) 2018, just referred to briefly in

• Addressed by establishing improved baseline, CompactLight Design Study (FEL linac) very important and

System boundaries

Only B6 normally discussed related to operation, now discuss A1-A5 for the CE Missing A1-A5 for accelerator, some surface installations, all maintenance and upgrades, all EoL activities

ARUP

Linear Collider Options

1. CLIC Drive Beam

5.6m internal dia. Geneva. (380GeV, 1.5TeV, 3TeV)

Reference: CLIC Klystron tunnel cross section, 2018

ARUP

2. CLIC Klystron

10m internal dia. Geneva. (380GeV)

3. ILC Arched 9.5m span. Japan. (250GeV)

Reference: Tohoku ILC Civil Engineering Plan, 2020

5.5m

LCA wrap up

A1-A5: Tunnel construction (ILC and CLIC DB dimensions) is around 6kton/km

- Add shafts, caverns, access tunnels, DR, etc + from 30 to 60%
- Add transports, power used in construction, etc + 25%
- = > ILC (20km) around 270 kton, CLIC (11 km) around 125 kton

Possible savings (but at a cost to be defined) of ~40% Adding accelerator components and injectors more consistently (possibly 50% increase – very early days)

Operation (in ~2050)

Nuclear 5g/kWh and re-newables (sun/wind/hydro) 20g/kWh – suitable for Europe, what is suitable as goal for Japan ? Can be higher with poor energy mix, can be lower with good contracting (good mix) Assume 50/50 mix = 1 TWh is 12.5 kton

France in summer months are at ~40 g/kWh, a factor three better towards 2050 within reach ?

In Japan this is harder, contracting on low carbon energy an important tool A green field site offers more flexibility for compensation (as in the green ILC approach)

-> Energy use estimated for LCs 0.6-0.8 TWh annually, i.e. around 10 kton CO2 -> Power nevertheless has huge cost impact, and secondary effects on CO2 (more material)

100% of projects due to be completed in 2030 or after are net zero carbon in operation

> with at least **40%** less embodied carbon compared to current practice

> > 2030 Breakthroughs UNFCCC

ARUP

Physics Analysis at CLIC

ongoing activities

• Recent publications:

Br(H-> $\gamma\gamma$) at 3TeV Full simulation study to confirm extrapolation from 1.4TeV Phys. Rev. D 105, 092009 (2022) -> see poster from G. Kacarevic

Br(H->ZZ) at 350GeV and 3TeV final states -> see talk from N. Vukasinovic

reconstructed m_H after full MVA selection

Ongoing studies:

CP Violation studies in H->ZZ at 1.4TeV Lepton flavour-violating Higgs decays

Progress of Linear Colliders - CEPC WS, October 2023

Full simulation using semileptonic

Phys. Rev. D 105, 092008 (2022) count/1ab CLICdp Signal ZH,Z→qq,H→WW→4q e⁻e⁺→qqqqll e⁻e⁺→aāll others 80 100 120 140 160 60 m_н (GeV)

Searches for exotic long-lived particles at CLIC using displaced vertices

Physics Analysis on Role of Beam Polarizations

cornerstone for making the physics case

constantly being explored what advantages polarized beams would bring in physics analysis

WIMP search

[M. Habermehl, PhD Thesis]

Progress of Linear Colliders - CEPC WS, October 2023

CP-violating HZZ and HZ_Y couplings

[→ talk by V.Miralles]

ILD strategy (open to all e+e-)

- Need to really understand the relevant parameters •
 - Impact of space charge
 - Occupancies •
- Operating a TPC above the Z does not seem to be a problem independent of the technology
- Pixel TPC seems an interesting option also for Z running and might work

Progress of Linear Colliders - CEPC WS, October 2023

[T. Behnke @ ILD2022]

Feedback from TPC

 $D^0 \rightarrow \pi^+ K^-$ reconstruction with Z-pole samples

	ϵ (%)	p (%)
$ ss - mass_{D0} < 0.01 \mathrm{GeV/c^2}$	90.39 ± 0.24	2.16 ± 0.07
$\mathrm{IMP} > 0.02\mathrm{mm^2}$	79.12 ± 0.21	5.04 ± 0.11
vertex fitted $\chi^2 < 5.15$	72.62 ± 0.23	15.36 ± 0.18
of vertex to IP $> 0.305 \mathrm{mm}$	69.24 ± 0.24	28.41 ± 0.23
PID	68.19 ± 0.24	89.05 ± 0.16

Detector Concepts

driving factors

- "Clean" environment at e+e- allows the design of detectors with very ambitious performance: event rate, event complexity, radiation level, all much lower comparing to that at hadron colliders
- Performance requirement driven by physics program from Z-pole to TeV

detector performance

Impact Parameter resolution

Momentum resolution

Jet Energy Resolution

Triggerless readout

Power pulsing

 $5 \ \mu m$ $\Delta(1/p) =$ ΔE

Progress of Linear Colliders - CEPC WS, October 2023

$$\bigoplus \frac{10 \ \mu \text{m GeV}/c}{p \ \sin^{3/2} \theta}$$

$$2 \times 10^{-5} \ (\text{GeV/c})^{-1}$$

$$E/E = 3-4\%$$

physics performance

O flavor tagging, e.g. hadronic Higgs BR meas. for bb/cc/gg

O leptonic recoil mass meas.

O hadronic decays of W/Z

(asymptotic resolution)

