Microelectronics at CERN

2023 international workshop on the CEPC 23–27 October 2023 Nanjing, China <u>https://indico.ihep.ac.cn/event/19316/</u>

Paulo Moreira

Outline

- CERN's Microelectronics section (EP-ESE-ME)
- Why microelectronics at CERN?
 - The two main drivers
- On going ME (and friends) activities
 - Radiation and technologies
 - Foundry Service and ASIC support
 - Power
 - Communications
 - Timing
 - Detector specific ASICs
- Often forgotten factors...
- The CHIPS "initiative"

CERN's Microelectronics (ME) section In the Electronic Systems for Experiments (ESE) group In the Experimental Physics (EP) Department

+ Collaborating Institutes

Why Microelectronics in HEP?

Paraphrasing Erik Heijne*

- "Over the last decades the <u>experiments in elementary particle physics</u> ..., <u>have seen profound</u> <u>changes</u>":
- "... orders of magnitude increases in <u>physical size</u>, <u>interaction rates</u>, <u>radiation intensity</u> and <u>data</u> <u>volume</u>."
- "...segmented and pixelated silicon detectors, ...calorimeters and surrounding muon detectors feature a much larger number of sensing elements"
- "...provides **improved precision in particle tracking and momentum measurement**, avoiding a need for even larger overall detector dimensions"
- "Associated silicon integrated circuits, specifically designed for these applications, improve the speed and reduce the electrical power for signal processing and information extraction."
- "... detectors can cope with <u>near-GHz interaction rates</u>, more than 1000-fold the rate at the LEP collider ~1995, and produce <u>distinctive reconstructions of interactions with µm-level precision</u>, even with hundreds of simultaneous particles"
- "All this in the inherently severe radiation environment up to tens of Mrad"
- "The unconventional <u>exploitation of silicon chip technology for radiation sensing and large-scale</u> parallel signal processing has been the most important enabling factor."

The ATLAS detector

E. Heijne

ATLAS Radiation Environment

Detector zone	Total dose [rad]	Neutron fluence [cm ⁻²]	Charged hadron fluence [cm ⁻²]
Pixel barrel	113×10^{6}	1.62×10^{15}	2.3×10^{15}
SCT barrel	7.8×10^{6}	1.6×10^{14}	1.2×10^{14}
ECAL barrel	4.8×10^{3}	1.8×10^{12}	3.8×10^{11}
HCAL	380	2.7×10^{11}	6.7×10^{10}
Muon detector	23×10^{3}	6.4×10^{12}	1.3×10^{12}

- High-Luminosity LHC (HL-LHC) upgrade radiation background to increase 10-fold
- ASICs radiation hardness
 - 100 Mrad "typically"
 - 1 Grad for the inner pixel layers (10¹⁶ n/cm² (1 MeV equivalent))

Overview of ME activities

Achieving radiation tolerance

Past

- Bespoke technologies
 - e.g. 800 nm BiCMOS (DMILL)

Recent past

- For *t_{ox}* > 12 nm
 - Radiation sensitivity decreases with thickness: $\propto t_{ox}^n$, $n \cong 2$
- For *t_{ox}* < 12 nm
 - Stepper decrease with t_{ox}
 - Enabling the use of commercial CMOS technologies to design RadTol ASICs
 - If combined with Radiation Hardness By Design techniques (RHBD)
 - e.g. in 250 nm and 130 nm CMOS

Now and [future?]:

- Modern processes (≤65 nm CMOS) allow to achieve very high radiation tolerance (> 100 Mrad) with minimum precautions:
 - e.g. bigger than minimum transistor sizes and controlled (during operation) annealing condition
- For bulk technologies the trend is promising but
 - Each node needs to be carefully characterised
 - Not all fabs, for the same technology, are equally good
 - Must monitor the production to ensure the RadTol quality
- More advanced is not necessarily better
 - e.g. 22nm Fully Depleted Silicon-On-Insulator
- A constant effort to evaluate and qualify new technologies for radiation hardness is needed

Threshold voltage shift of transistors in commercially CMOS technologies

TID on ring-oscillators

(Lower DR, still being studied.)

[28nm] Borghello, G., et al. "Total ionizing dose effects on ring-oscillators and SRAMs in a commercial 28 nm CMOS technology." *Journal of Instrumentation* 18.02 (2023): C02003. [65nm] https://cds.cern.ch/record/2725573/files/DRAD%20report.pdf

Preliminary studies show 16 nm FinFET technologies to have good radiation tolerance. doi: 10.1109/TNS.2021.3076977.

SEU on SRAM

SRAM cross section

Achieving SEU tolerance

- Single Event Effects (SEE) <u>do</u> <u>not</u> improve with Technology Scaling
- These need to be dealt at:
 - Circuit level
 - System level
- The "solution" is not unique:
 - Strategies are abundant
- CERN's Triple Modular Redundancy Generator (TMRG)
 - Automatizes the triplication of digital circuits
 - Frees the designer from introducing TMR code manually during the design stage
 - Ensures triplication is maintained through the full design process
 - Streamlines the process of introducing SEE in the gate level simulations for final verification

TMRG Triple Modular Redundancy Generator

https://media.ccc.de/v/36c3-10575-how to design highly reliable digital electro

Foundry Service and ASIC support

CMOS Technology nodes: ..., 130, 65 and 28 nm

Foundry Access Services

- Establish contracts with silicon vendors
- Establish NDAs for collaborative work
- Organize MPW runs & share costs
 - Coordinate fabrication
 - MPW, Engineering & Production

ASICs Support Services

- Develop and distribute the Common Design Platforms for mixed-signal ASICs design
 - Maintain/distribute PDKs
 - Prepare/distribute design flows
 - Maintain/distribute "macro blocks"
 - Support System-on-Chip design
- Provide support to HEP IC designers community
 - Support technology and EDA tool usage requests
 - Promote the collaborative works and knowledge sharing
 - Organize training workshops about design for HEP environment

R&D WP5

- 28nm RadTol qualification
- Development of macroblocks
- Development towards SoC
- RISC V and programmability

On-detector power supply

Radiation and magnetic-field tolerant family of components

ASICs for optical links

lpGBT chipset

ASICs for optical links

DART28

Demonstrator ASIC for Radiation-Tolerant Transmitter in 28 nm

Four-channel serializer

- Each channel:
 - Multiple PRBS generator
 - LC based "ADPLL"
 - Duty-cycle correction circuit
 - 25 Gbps Serializer
 - Multi-mode driver
 - Cable / Ring Modulator
 - Pre-emphasis
 - Edge-pre-emphasis
- Clock jitter
 - RJ < 300 fs rms (FD)
 - RJ: 250 fs rms (TD)
 - DJ: 786 fs pk-pk (TD)
 - TJ: 4.3 ps pk-pk (TD)
- Eye jitter
 - Random < 800 fs
 (when using some "magic")
- Main challenge:
 - Power delivery to the ASIC
 - Bump bonding under development

ASICs for fast timing detectors

FastIC & PicoTDC

Detector-specific ASICs for HL-LHC:

CMS Outer Tracker

The p_T modules

- Part of the CMS LV1 trigger:
 - Measurement of transverse momentum of tracks
 - Rejection of p_T < threshold

PS module

- Silicon micro-strip sensor
 - 960 strips
 - Cell size of 2.5 cm \times 100 μm
 - Readout ASIC: SSA
- Macro-pixel matrix
 - 32 × 960 array
 - pixel size of 1.5 mm \times 100 μ m

"stub

 $1 \div 4 mm$

<100 µm

pass

Readout ASIC: MPA

<u>RD53</u>

Pixel detectors for CMS and ATLAS

- ASICs are "instances" of a common design
- Targeting experiment specific requirements:
 - Different sizes
 - Different analogue front-ends:
 - Linear Front-End (CMS)
 - Differential Front-End (ATLAS)
- Links:
 - Command, control and timing: 160 Mb/s
 - Data: 4 x 1.28 Gb/s
- Power:
 - Serial powering
- Collaborative work
 - Since 2013
 - 24 institutes worldwide
 - ATLAS ITkPixV2 currently under test
 - CMS CROCv2 submission end 2023

RD53C-CMS (CROCv2) Sept. 2023 RD53C-ATLAS (ItkPix2) March 2023

Parameter	Value (CMS/ATLAS)
Technology	65 nm CMOS
Max. hit rate	3.5 GHz/cm ²
Trigger rate	750 kHz / 1 MHz
Trigger latency	12.5 μs
Pixel size (chip)	50 x 50 μm²
Pixel size (sensor)	$50x50\mu m^2~~or~~25x100\mu m^2$
Pixel array	432 x 336 pixels / 400 x 384 pixels
Chip dimensions	21.6 x 18.6 mm ² / 20 x 21 mm ²
Detector capacitance	< 100 fF (200fF for edge pixels)
Detector leakage	< 10 nA (20nA for edge pixels)
Min. threshold	< 1000 e-
Radiation tolerance	1 Grad over 10 years at -15°C
SEE tolerance	SEU rate, innermost: ~100Hz/chip
Power	<1W/cm ² , Serial powering
Readout data rate	1-4 links @ 1.28Gbits/s = max 5.12 Gbits/s
Temperature range	$-40^{\circ}C \div 40^{\circ}C$

Timepix4

Imaging and timing

Technology			65nm – 10 metal
Pixel Size			55 x 55 μm
Pixel arrangement		ont	4-side buttable*
		ent	512 x 448
Sensitive area			6.94 cm ²
Data driv (Tra	Data	Mode	TOT and TOA
	drivon	Event Packet	64-bit (Addr + TOA + TOT)
	(Tracking)	Max rate	3.58x10 ⁶ hits/mm ² /s
	(Tracking)	Max Pix rate	10.8 KHz/pixel
Frame based (Imaging)	Frame	Mode	CRW: PC (8 or 16-bit)
	Frame	Not-zero-suppressed	
	(Imaging)	Max count rate	~5 x 10 ⁹ hits/mm²/s
TOT energy resolution		olution	< 1Kev
Time resolution		ו	195ps bin → ~60ps _{rms}
Readout bandwidth		vidth	16 x @10.24 Gbps
Minimum threshold		shold	<500 e⁻

* With TSV technology

Timepix4v0 with 4x300 μm (256x256) edgeless Si sensor (August 2020) https://indico.cern.ch/event/1121147

Monolithic pixel detectors

Monolithic Stitched Sensor (MOSS & MOSAIX)

- ALICE Inner Tracking System (ITS) replacement
- Layers
 - With dimensions up to 266 mm × 92 mm
 - Made with single die sensors
 - The sensors thinned below 50 µm and bent as true half-cylinders
- Monolithic pixel prototype chip (MOSS)
 - Proof of concept for the ALICE ITS3 upgrade
 - To explore the <u>stitching</u> technique
 - Technique to manufacture modular chips that are much larger than the design reticle
 - Investigate the achievable yield
 - Fabricated in a 65 nm CMOS Imaging Process
 - Measuring 259 mm × 14 mm
 - Wafer scale integration
 - Chips available April 2023
- MOSS Architecture
 - Ten abutted and Repeated Sensor Units (RSU) of 25.5 mm × 14 mm
 - Two small end-cap regions at the two sides of the abutted RSUs
 - Top pixel array: 4 × (256 × 256 pixels) with pitch of 22.5 μm
 - Bottom pixel array: 4 × (320 × 320 pixels) with pitch of 18 μm
 - 6.72 million pixels

(65 nm CMOS Imaging Process)

The "hidden faces" of microelectronics

Digital Design

- ASIC designs are becoming • evermore complex
 - In industry
 - In HEP
- The CAD tools complexity follows to ٠ coupe with
 - Technology complexity _ ("exploding" number of design rules)
 - Functionality
 - Density _
 - Design for reliability
- Teams naturally increase to cope with design complexity
- Engineers specialize to deal with:
 - Complexity (divide and conquer) _
 - Efficient used of CAD tools
- Verification becomes a must
 - Indispensable for "first time right" _ **ASICs**
 - e.g. Four of the last hirings in ME _ were verification engineers.

Digital design is not only about RTL

- Best effort estimate of the time spent on various steps of block-level and top-level digital design processes (lpGBTv0 and lpGBTv1)
 - Error bars on this plot should be at least 10%

Lessons Learned

The "hidden faces" of microelectronics

Verification

Verification statistics

CHIPS

Community Support

ASIC support service for HEP

- Started in January 2020
- To address delays in ASIC developments
 - That could seriously impact the HL-LHC physics programs
- Delays attributed to:
 - Increased complexity of ASICs and CAD tools

IC design Platform & Services

- ASIC design support
 - By EP-ESE-ME experienced designers to HEP community
- Subcontract specialised ASIC design tasks
- Train HEP ASIC designers in medium to long term

Common type of Support

- **1.** Functional verification
- 2. Digital design (RTL) + PNR
- 3. SEE robust designs (TMR)
- 4. Transition to digital-on-top (DoT) designs
- 5. Analog design support

Since January 2020

- ASICs for 6 detector systems
 - CMS Outer Tracker
 - CMS pixels
 - ATLAS pixels
 - ATLAS ITK
 - CMS HGCAL
 - ATLAS HGTD