

CEPC application potentials as an advanced photon source

Yuhui Li, *Cai Meng* On behalf of the CEPC design team

中國科學院為能物加加完施 Institute of High Energy Physics Chinese Academy of Sciences

23-27. Oct. 2023, Nanjing, CEPC International Workshop 2023

• CEPC serving as an ultra-high energy γ-ray synchrotron

source

- Beam parameters
- Radiation characters
- Impact to the beam and mitigation measures
- Conceptual design for the γ -ray extraction system

CEPC potential as an ultra high energy FEL facility

- Tentative schematic plan and beam parameters
- Start-to-end simulation for the electron beams
- FEL parameters optimization and selection
- FEL simulations and indicators

CEPC as a gamma-ray SR facility

Gamma-ray SR facility: Laser Compton y-ray sources

- medium-energy source with γ-ray beams in the range of 60 and 350 MeV
- Low-energy source, below 20 MeV

Project name/parameters	HIGS	LEPS/LEP	S2 NewSUBAI	RU UVSOR-III	SLEGS	XGLS	ELI-NP
Location	Durham, US	Hyogo, Jap	an Hyogo, Jap	an Okazaki, Japa	an Shanghai, China	Xi'an, China	Bucharest–Magurele, Romania
Accelerator technology Laser technology	Storage ring FEL	Storage rin Solid state laser	g Storage rin e Solid state/g laser	ng Storage ring gas Fiber/gas las	g Storage ring er CO_2 laser	Linac Ti:sapphire laser	Storage ring Solid state laser
Collision technology	Intra-cavity, head-on	External las head-on	er, External las head-on	er, External lase head-on	er, External laser, cross-angle/head-o	External laser, n head-on	Intra-cavity, head-on
Electron energy (MeV)	240-1200	8000	500-1500) 750	3500	120-360	234-742
Laser wavelength (nm)	1060-190	266 and 35	5 532-1060	0 1940 and 10600	10 640	800	1030/515
Charge and temporal structure A. CW: Avg. current (mA), Q (nC)@reprate (MHz) B. Pulsed: f_{RF} (MHz), pulse: Q (nC)@reprate (Hz), pulse duration (full-width)	10–120, 1.8–22@5.58	100, 0.2–2@50–:	300, 500 0.6@500	300, 3@90	100–300, 0.28–0.87@347	2856 (s-band), 0.5@10, 10 ps (micropulses)	1@71.4
γ -beam energy (MeV)	1 - 100	1300-290	0 1-40	1-5.4	0.4-20	0.2-3	1-19.5
Polarization	Lin, Cir	Lin, Cir	Lin, Cir	Lin, Cir	Lin, Cir	Lin, Cir	Lin
γ -beam energy resolution	0.8%-10%	< 15%	10%	2.9%	< 5%	1.2%-10%	< 0.5%
(FWHM)	collimation	tagging	$(\phi = 3 \text{ mm} \text{collimatio})$	n) $(\phi = 2 \text{ mm})$ n collimation	$(\phi = 2 \text{ mm})$ collimation	collimation	collimation
γ -beam temporal structure							
A. CW operation (MHz) B. Pulsed operation	5.58 (typical) 0.5–1.5 ms (FW 2–100 Hz, gain modulated	50–500),	500 8 ns pulse 10–100 kH <i>Q</i> -switche lasers	90 , , , d	347	pulsed, 10 Hz	71.4
On-target flux (avg, γ /s)	$10^{3} - 3 \times 10^{9}$	10 ⁶ -10 ⁷	$0^{5}-3 \times 10^{6}$	$4 imes 10^5$	$10^{5} - 10^{7}$	$10^{6} - 10^{8}$	$\sim 10^8$
Total flux (avg, γ /s)	$10^{6} - 3 \times 10^{10}$	$10^6 - 10^7$	$\phi = 3 \text{ mm}$) ($0^7 - 4 \times 10^7$	$\phi = 2 \text{ mm}$) 10^7	$(\phi = 2 \text{ mm})$ $10^6 - 10^8$	$10^8 - 10^9$	10^{11}
Operation status or projected operation date	Since 1996	Since 1999	Since 2005	Since 2015 U	nder construction, Operation in 2022	Under construction Operation in 2023	, Under construction, Operation in 2023
Reference	[268, 278]	[279]	[253]	[249]	[280, 281]	[282]	

Beam parameters

Radiation Spectrum

SR sources:

Wiggler parameter	
B (T)	2
Total length (m)	0.32
Magnetic period Length (m)	0.32
Period number	1
K value	59.7
Critical energy (MeV)	19.2
Bending magnet	
B (T)	0.04
Length (m)	20
Critical energy (keV)	383

Angular Density of Spectral Flux: [Ph/s/mr/0.1%bandwidth]

$$\frac{d\mathscr{F}}{d\varphi} = 2.46 \times 10^{13} \operatorname{E}_{e} [\operatorname{GeV}] \operatorname{I}[A] \operatorname{G}_{1} (\omega/\omega_{c})$$

$$G_{1}(y) = y \int_{y}^{\infty} \operatorname{K}_{5/3}(y') \, dy' \quad G_{1}(y) \approx \begin{cases} (\omega/\omega_{c})^{1/3}, \omega \ll \omega_{c} \\ \exp\left(-\frac{\omega}{\omega_{c}}\right), \omega \gg \omega_{c} \end{cases}$$

- Bending magnets generate intensive x-ray photon with energy around 100 keV
- Wiggler with 2T generates gamma-ray in the level of 100 MeV

Comparison with other x-ray source

Compare to the SSRF, HEPS in China, CEPC provides much wider energy range, higher intensity, and maximum photon energy

Beam line arrangement and impact to collider

- Since the bending magnets are original ones used in CEPC, they introduce no additional impacts.
- The short wiggler is installed in the lattice at the down stream of the on-axis injection region. Switching on the wiggler increases additional 1.3% beam energy loss, which is acceptable according to specific simulations.

B [T]	Np	Length [m]	ΔU0/U0
2	1	0.32	1.3%

Mitigation measures to the SR effect

- The conventional measures to mitigate the beam energy loss due to SR is to taper the bending magnet field.
 - The closed orbit distortion is expected to be 15μm at wiggler by applying bending magnet tapering.
 - The dynamic aperture w/ and w/o wiggler are almost the same.

Conceptual design of the vacuum chambers

Conclusion to the application as gamma source

- Due to the ultra-high beam energy of over 100 GeV, CEPC presents an unique opportunity to generate 100 MeV level intensive gamma-rays using a 2 T wiggler
- Compare to other photon sources, CEPC may provide much higher photon energy with intensity
- Beam dynamic simulations indicate that the introduced beam energy loss is acceptable
- The original bending magnet can generate 100 keV level x-rays, covering a wide range of photon energies
- Conceptual design for the vacuum system were made
- There are wide-ranging applications waiting to be explored

CEPC as a high energy FEL facility

Survey of the hard x-ray FELs in the world

Hard XFEL Facilities	Beam Energy (GeV)	Photon Energy (keV)
European XFEL (Germany)	17.5	0.26-25
LCLS (USA)	15	0.2-25
PAL-FEL (Korea)	10	0.25-15
SACLA (Japan)	8.5	4-20
SHINE (China, under construction)	8	0.4-25
Swiss FEL (Swiss land)	6	0.25-12

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) \qquad \qquad E = \frac{2hc\gamma^2}{\lambda_u \left(1 + \frac{K^2}{2}\right)}$$

- Existing hard x-ray FELs use beam energy less
 than 20 GeV
- As the consequence, the maximum photon energy is lower than 25 keV
- In some specialized fields, the current indicators are difficult to meet the requirements. In the study of the dynamic properties of high-Z materials in materials science, there is a high demand for high-flux and high-photon-energy XFELs (photon energy of 50 keV and above).
- Ultra-high energy FELs in the level of 100 keV requires beam energy larger than 20 GeV

Linac Layout and Potential as a FEL Facility

- CEPC Linac is a 30 GeV normal conduction linear accelerator
- The C-band accelerator increase the beam energy from 1.1 GeV up to to 30 GeV
- It along can generate beam energy over 20 GeV, which is a very good candidate to drive a ultra-high energy x-ray FEL

Schematic plan for the XFEL Facility

- Additional photon RF gun is needed, adjacent to the damping ring
- 3 chicanes are induced for bunch compression
- Beam energy of 25 GeV is sufficient
- An undulator line will be installed parallel to the linac

Start-to-end simulations of gun to Linac

Phase space at the accelerator end:

- Various effects, including CSR, wakefield, ect., have been accounted;
- 5kA peak current is available
- The energy spreads in the range of 25MeV, slice energy spread is 2MeV

Beam Parameters

	Value	Unit
Electron energy	25	GeV
Bunch charge	0.4	nC
Peak current	5	kA
Bunch length	8	μm
Normalized emittance(slice)	0.65	mm mrad
Energy spread (slice)	2.0	MeV
Max. Repetition rate	100	Hz

Undulator Parameter Selection

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} (1 + \frac{K^2}{2})$$

 $K = 0.934 \lambda_u [cm] B[T]$

	Value	Unit
Undulator Period	25	mm
Minimum Gap	6	mm
Maximum Field	1.2	Т
Undulator parameter, K	2.8	-
Undulator type	IVU, hybrid	-
Magnet material	NbFeB	-
Polarization	Linear	

- The goal is to generate 100 keV FELs
- A certain tunability is need to the lower photon energy region
 - 48keV ~ 100keV
- Performance of different undulators are investigated

 $E(\text{keV}) = \frac{1.24}{\lambda_r(\text{nm})}$

FEL Design Criteria

 $(2\rho_{1D})^3 = \frac{\mu_0 e^2 n_0 K^2 [JJ]^2 \lambda_u^2}{16\pi^2 m \nu^3}$

 $L_{g,1D} = \frac{\lambda_u}{4\sqrt{3}\pi\rho_{1D}}$

 $L_{sat} \approx 20 L_{g^{+}}$

- 1-D Pierce Parameter:
- One dimensional power gain length:
- Saturation length:
- Saturation power:
- Spectrum bandwidth:
- Co-operating time:

- $P_{FEL} \approx \rho_{1D} P_{e^{+\nu}}$ $2\rho_{1D^{+\nu}}$ $t = \frac{1}{\omega \rho_{1D}} P_{e^{+\nu}}$
- 3-D Gain Length: $L_{g,3D} = L_{g,1D}(1 + \delta)$

$$\begin{split} \delta &= a_1 \eta_d{}^{a_2} + a_3 \eta_{\varepsilon}{}^{a_4} + a_5 \eta_{\gamma}{}^{a_6} + a_7 \eta_{\varepsilon}{}^{a_8} \eta_{\gamma}{}^{a_9} + a_{10} \eta_d{}^{a_{11}} \eta_{\gamma}{}^{a_{12}} \qquad \eta_d = \frac{L_{g,1D}}{2k_r \sigma_x{}^2}, \eta_{\varepsilon} = 2L_g \beta k_r \varepsilon, \eta_{\gamma} = 2L_g \lambda_u \sigma_\gamma + a_{13} \eta_d{}^{a_{14}} \eta_{\varepsilon}{}^{a_{15}} + a_{16} \eta_d{}^{a_{17}} \eta_{\varepsilon}{}^{a_{18}} \eta_{\gamma}{}^{a_{19}} \end{split}$$

Energy spread, beta-function and beam transverse size are accounted

Ming Xie, NIM A, 445, 59 (2000)

19

Beam Energy and β Function Investigation

25 GeV beam energy and 80 m beta function is the optimum selection for a reasonable saturation length

Saturation Spectrum in Time and Frequency Domain

- Homogeneity current of 5kA is supposed in the simulation
- The radiation wavelength is 0.0134 nm, corresponding to 93 keV
- The fitted sigma is 2.18e-6 nm, $(\frac{\Delta\omega}{\omega} \approx 3.26 \times 10^{-4})$, agree well with the band with evaluation using Pierce parameter (1.6 x 10⁻⁴)

Radiation Gain Curve and FEL Characters

Undulator system R&D

- Most of the technologies are conventional and mature
- IHEP holds full in-house experiences to most of the related technologies
- Undulator is the special technology, which is only used in photon sources
- IHEP develop undulators for HEPS, including the required in-vacuum UND

Undulator	Length	Period	Performance	Max. Peak
Туер	[m]	[mm]	Gap [mm]	Field [T]
CPMU	2	12.0	5.2-7.0	0.81
CPMU	2	14.2	5.2-9.9	1.00
CPMU	2	16.7	5.2-10.0	1.19
CPMU	2	18.8	5.2-13.1	1.35
CPMU	2	22.8	7.2-16.0	1.18
IVU	4	18.8	5.2-13.1	1.35
(NdFeB)				
IVU	4	19.9	5.2-14.0	0.97
(SmCo)				
IVU	4	22.6	5.2-15.2	1.10
(SmCo)				

Conclusion to the application as a FEL facility

- CEPC exploits a 30 GeV Linac, which can drive an ultra-high x-ray FEL
- Additional photon RF gun is need for small emittance and energy spread
- 3 chicanes will be installed in Linac for the bunch compression, which results in 5kA peak current
- In-vacuum undulator will used to generate 100keV, with a centain wavelength tunability
- 100 keV SASE-FEL is simulated, corresponding to the analytical evaluation

The End

Gamma-ray focalization

 focusing of the synchrotron radiation beam: Laue lenses, Bragg diffraction, Au or Pb

 $T_{\gamma} = 3mn$

Gamma-Ray Detection

Gamma-ray camera: thin scintillator +focusing system+SPad

- The incident y light passes through a thin scintillator and turns into visible light, which is imaged after lens focusing
- The focal plane uses a small-pixel SPAD (integrated SiPM)

X ray energy range: keV~MeV Position resolution: 10 microns Detector area: ~40mm

- Need to do:
- Flux and energy distribution of the gamma-rays From wiggler lines

X3

 M_2

Possible Applications on Metals

- Processing of heavy metal materials in an in-situ environment
- Non-destructive characterization of the internal structure of the workpiece under casting, forging and service conditions
- >Internal welding problems, defect evolution, grain arrangement and failure analysis of materials

Dynamical diagnosis >1kHz+ large penetration depth+ clear imagination

>10¹²photon/s 10⁹photon----

10⁹photon---enough for a clear imagination

>1000Hz can satisfy:

Dynamical diagnosis of defect evolution/metal phase change processdroplet solidification/seawater corrosion mechanism

Possible Applications on Nucleon

Gamma assistant transmutation:

- γ assistant transmutation is quite-valuable, and is an important supplement to neutron transmutation.

2.06 v

2.3 Mv

- (y,n), (y,2n), Can increase the average number of fission neutrons!
- γ +135Cs \rightarrow 134Cs, 133Cs; γ +133Cs \rightarrow 132Cs, 131Cs

stable

13.16 d

Possible Applications on Medical

Radioisotope preparation for SPECT/CT & Flash RT

• $10^{14} p/s$ flux can produce: 10000Ci/y Mo99 compared with a linac 1mA per year

