
Using FPGA to accelerate machine
learning inference for particle physics

Yutao Zhang，Yaodong Cheng, Haibo Li

Computing center, IHEP, CAS

2023-10-24

THE 2023 INTERNATIONAL WORKSHOP ON THE HIGH ENERGY CIRCULAR

ELECTRON-POSITRON COLLIDER (CEPC)

Outline

• Background and motivation

• Brief introduction to FPGA AI programming

• A case of ParticleNet implementation on FPGA

• Summary

2023/10/24 2

Background – AI explosion

2023/10/24 3

42023/10/24

2023/10/24 5

AI and Memory Wall

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

2023/10/24 6

ATLAS Software and Computing HL-LHC Roadmap

… flat computing budget

Need innovation and new techniques to maintain physics research while

staying within throughout requirements!

https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf

Todays algorithms will not be sustainable in future HEP

experiments such as HL-LHC, CEPC, …

→Need modern Machine Learning to become

Faster

Better

and do more

More complex architecture to deal with increased data complexity

2023/10/24 7

AI Algorithms Acceleration

• AI has emerged as a solution to efficiently

analyze these massive data sets

• GPUs and FPGAs allow AI algorithms to be

greatly accelerated

• The combination of AI and these processors is

leading to a revolution in the way we analyze

data, minimizing the time needed to perform the

most advanced of analyses

• A3D3: Accelerated AI Algorithms for Data-Driven

Discovery

• high energy physics, multi-messenger astrophysics, and

systems neuroscience

2023/10/24 8

A3D3 institue

https://a3d3.ai/about/

AI and FPGA application in Particle physics

2023/10/24 9

Low Latency
⚫ Strictly limited by collisions

occurring every 25ns

Low resource usage
⚫ Several algorithms in parallel on

single device

High throughput
⚫ System processing ~5% of total

internet traffic

✓ AI and FPGA has widely applied in trigger and data processing
⚫ Trigger, ml for data compression

⚫ Simulation, ml for data generation

⚫ Data reconstruction and analysis

✓ Requirements

✓ Why are FPGAs used?

Low Latency
⚫ Resource parallelism and pipeline parallelism! High bandwidth

Latency deterministic
⚫ CPU/GPU processing randomness, FPGA repeatable and

predictable latency

Power efficient
⚫ FPGAs up to ~10x more power efficient than

GPU

How are FPGAs programmed?

Hardware Description Languages (HDLs)

HDLs are programming languages which describe electronic circuits

High Level Synthesis (HLS)

Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the design

Drastic decrease in firmware development time!

Currently we mainly use Xilinx Vivado HLS [*]

2023/10/24 10

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

1. Convert model into
internal representation

2. Write HLS project
targeting specified

backend

3. Run emulation

4. Run synthesis

AI Programming on FPGA

2023/10/24 11

Model
(quantized/Pruned)

Vivado/Vitis best supported

Intel Quartus

Intel One API

Mentor Catapult HLS

available soon

Co-processing kernel

(Xilinx accelerators and/SoCs)

FPGA custom designs

(eg trigger algorithm)

ASIC/NPU

hls4ml

●Hls4ml：high level synthesis for machine learning
●hls4ml is a package for translating neural networks to FPGA firmware for inference with

extremely low latency on FPGAs
✓ https://github.com/hls-fpga-machine-learning/hls4ml

✓ https://fastmachinelearning.org/hls4ml/

✓ pip install hls4ml

●hls4ml origins: triggering at (HL-)LHC

●Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)

●Most collision “events” don’t produce interesting physics

● “Triggering” = filter events to reduce data rates to manageable levels

●hls4ml community is very active now

●Tutorial

https://github.com/fastmachinelearning/hls4ml-tutorial

2023/10/24 12

https://github.com/hls-fpga-machine-learning/hls4ml
https://fastmachinelearning.org/hls4ml/
https://github.com/fastmachinelearning/hls4ml-tutorial

Efficient NN design for FPGAs

2023/10/24 13

FPGAs provide huge flexibility

Performance depends on how well you

take advantage of this

Constraints:

Input bandwidth

FPGA resources

Latency

Main methods to optimize the FPGA project

Pruning: reduce number

of neurons

Quantization: reduce the

precision of the calculations (inputs,
weights, biases）

Parallelization : tune

how much to parallelize to
make the inference faster

2023/10/24 14

Quantization – QAT vs. PTQ

• Quantization is a common technique used to reduce model size, though it can sometimes

result in reduced accuracy

2023/10/24 15

QAT: Quantization Aware Training

The network is further trained for
few epochs in a process called Fine-
Tuning/Retraining.
Without/Less sacrificing accuracy

PTQ: Post-Training Quantization

The model's weights and activations are
quantized from high precision to low
precision, such as from FP32 to INT8
Does not consider for the loss of accuracy

Quantization – Symmetric vs. Asymmetric

2023/10/24 16

Quantize：

Dequantize：

floatR
Q clamp(round())

S
=

float QR S *=

Quantize：

Dequantize：

floatR
Q clamp(round() Z)

S
= −

float Q Z)R S * (+=

Symmetric Asymmetric

Quantization – Per tensor vs. Per channel

2023/10/24 17

Per Tensor

The weights of each layer have the

same 𝑠𝑐𝑎𝑙𝑒 and 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡

Per Channel

The weights of each channel have

the same 𝑠𝑐𝑎𝑙𝑒 and 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡

Physical case: Jet tagging

• Jet: collimated spray of hadrons initiated by energetic quarks or gluons, and they are

ubiquitous at a hadron collider

• Jet tagging: identifying the hard scattering particle that

initiates the jet, examples:

• heavy flavor tagging (bottom/charm)

• heavy resonance tagging (top/W/Z/Higgs)

• quark/gluon discrimination

• exotic jet tagging (displaced, 4-prong, …)

• The rise of machine learning (ML) has brought lots of new progresses to jet tagging

2023/10/24 18

ParticleNet: jet tagging via particle clouds [arXiv:1902.08570]

PFN: Particle Flow Network based on the Deep Sets [arXiv:1810.05165]

top other quarkZ W gluon

t→bW→bqq

3-prong jet

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure
and/or mass ~ 0

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1810.05165

Workflow of ParticleNet

2023/10/24 19

CPU

FPGA

✓ Using heterogenous solution with CPU and FPGA

Accounts for ~70% of
the total time

Quantization of ParticleNet

• The quantization policy combined with Symmetric, Post-Training and Per

tensor

• Symmetric: power-of-Two Quantization, 𝑠𝑐𝑎𝑙𝑒 = 2𝑥

2023/10/24 20

Parameters ACC Type

ParticleNet 993KB ~93.9% float32

ParticleNet-quantization 289KB ~93.3% Int8

𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

Quantization implementation

2023/10/24 21

𝐴𝑛+1 = 𝐴𝑛 ⊙𝑊𝑛 + 𝐵𝑛

𝐴𝑞𝑛+1𝑆𝑎𝑛+1 = 𝐴𝑞𝑛𝑆𝑎𝑛 ⊙𝑊𝑞𝑛𝑆𝑤𝑛
+ 𝐵𝑞𝑛𝑆𝑏𝑛

𝐴𝑞𝑛+1𝑆𝑎𝑛+1 = 𝐴𝑞𝑛 ⊙𝑊𝑞𝑛 𝑆𝑎𝑛𝑆𝑤𝑛
+ 𝐵𝑞𝑛𝑆𝑏𝑛

∵𝑆𝑏𝑛 = 𝑆𝑎𝑛𝑆𝑤𝑛

∴𝐴𝑞𝑛+1 = 𝐴𝑞𝑛 ⊙𝑊𝑞𝑛 + 𝐵𝑞𝑛
𝑆𝑎𝑛𝑆𝑤𝑛
𝑆𝑎𝑛+1

Convert floating point calculation to fixed point calculation

Quantization implementation (II)

2023/10/24 22

Convert floating point calculation to fixed point calculation

𝑆𝑎𝑛𝑆𝑤𝑛

𝑆𝑎𝑛+1
= 2𝑎𝑛+𝑤𝑛−𝑎𝑛+1 ,

𝐴𝑞𝑛+1 = 𝐴𝑞𝑛 ⊙𝑊𝑞𝑛 + 𝐵𝑞𝑛 2𝑎𝑛+𝑤𝑛−𝑎𝑛+1

ቊ
𝑅 × 2𝑥 = 𝑅 << 𝑥 , 𝑥 ≥ 0
𝑅 × 2𝑥 = 𝑅 >> 𝑥 , 𝑥 < 0

log 2

𝑆𝑎𝑛𝑆𝑤𝑛

𝑆𝑎𝑛+1
= 𝑎𝑛 +𝑤𝑛 − 𝑎𝑛+1

Any 2𝑥 operation can be further simplified with

shifting operations in hardware logic as:
𝐴𝑞𝑛+1 = 𝐴𝑞𝑛 ⊙𝑊𝑞𝑛 + 𝐵𝑞𝑛

𝑆𝑎𝑛𝑆𝑤𝑛

𝑆𝑎𝑛+1

𝑆 = 2𝑥，therefore:

Pipeline parallelism

2023/10/24 23

Point
Conv

Core

Out

buffer

Bias

+

Relu

Buffer
Conv

Core

Out

buffer

Bias

+

Relu

Conv

Layer i

Conv Layer

i+1

...

Feature Feature

Buffer

Feature

Aggrate

Off-chip memory

Weight

buffer

Weight

buffer

FPGA processing element

Off-chip memory

FPGA buffer

内部数据传输

外部内存访问

data1 data2 ...
input

 Layer1

 Layer2

Output

...
...

...

...

Result1 Result

data1 data2
input

 Layer1

 Layer2

Output

...

Result1 Result ...

Total T

✓ A customized architecture to make full use of the resources of the hardware
✓ Each convolution layer is calculated in parallel without the need to write

intermediate results back to external memory

Quantization of PFN

2023/10/24 24

Parameters ACC Type

PFN 330KB ~89.6% float32

PFN-quantization 94KB ~88.1% Int8

PCNN 1.4MB ~89.6% float32

PCNN-quantization 367KB ~89.4% Int8

FPGA as a coprocessor

• Inference for ML algorithms can be accelerated

dramatically by running on coprocessors such as

FPGA, etc

• The most straightforward way to deploy algorithms

on coprocessors is to run workflows on machines

with FPGA coprocessors

• But, “Direct connection” can be inefficient due to

unbalanced assignment of workload

• Inference cluster with a scheduler can be a good

solution to the problem, which will be a new cloud

service: Inference as a Service

• Eg: CMS SONIC (Services for Optimized Network

Inference on Coprocessors)

2023/10/24 25

Portable Acceleration of CMS Mini-AOD Production with

Coprocessors as a Service

https://indico.cern.ch/event/1283970/contributions/5554352/

AI Inference ClusterClient Scheduler

Summary

• The large science facilities such as CEPC generally produce massive data,

which brings unprecedent challenges to IT

• Machine learning (ML) based algorithms are becoming increasingly

common in HEP work flow

• FPGA as a coprocessor can accelerate the AI inference dramatically with

low latency and power consumption

• Some projects such as hls4ml greatly simplifies the difficulty of

programming

• We have tried to implement particleNet and other models on FPGA

2023/10/24 26

Acknowledgement

• The majority of the work was completed by our team members, including

Yutao Zhang, Yu Gao and so on. I thank them for their outstanding work.

• Some of the materials in this presentation are sourced from projects like

fastml and hls4ml, or Internet, and I would like to express my gratitude. If

there are any copyright concerns, please notify me.

2023/10/24 27

Thank you for your attention

chyd@ihep.ac.cn，lihaibo@ihep.ac.cn

2023/10/24 28

