THE 2023 INTERNATIONAL WORKSHOP ON THE HIGH ENERGY CIRCULAR
ELECTRON-POSITRON COLLIDER (CEPC)

Using FPGA to accelerate machine
learning inference for particle physics

Yutao Zhang, Yaodong Cheng, Haibo Li
Computing center, IHEP, CAS
2023-10-24

YOS e fi

te of Figh Energy Physics, Chinese Academy of Science

Outline

« Background and motivation

* Brief introduction to FPGA AI programming

A case of ParticleNet implementation on FPGA
« Summary

' 2023/10/24

Background — AI explosion

Open Al (2023)

Example of GPT-4 visual input:

User What is funny about this image? Describe it panel by panel.

i N L A
ps:/ fwww. reddit. com/ r/ hmmm/ comment s/ nbabbv/ hmmm

Sowee; s
GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,

GPT-4 visual input example, Chart Reasoning;

User What is the sum of average daily meat consumption for Georgia and Western Asia?
Provide a step-by-step reasoning before providing your answer.

Georgia TeEdg

Westeim Asiy

GPT-4 To find the sum of average daily meat consumption for Georgia and Western Asia,
we will follow these steps:

1. Identify the average daily meat consumption for Georgia.
2. Identify the average daily meat consumption for Westem Asia.
3. Add the values from steps 1 and 2.

Step 1: From the provided chart, we see that the average daily meat con-
sumption for Georgia is 79.84 grams per person per day.

Step 2: From the chart, we see that the average daily meat consumption for
Western Asia is 69.62 grams per person per day.

Step 3: Add the values from steps 1 and 2.

79.84 g (Georgia) + 69.62 g (Western Asia) = 149.46 g

So, the sum of average daily meat consumption for Georgia and Western
Asia is 149.46 grams per person per day.

outdated VGA connector into a small. modem smar_tghone charging port.

(0138, [o] =

GPT-4

GPT-3

175,000,000,000 100,000,000,000,000

(0.16% of neurons in your brain) (All the neurons in your brain?)

Train (GPT-3):

« 285,000 CPU cores

- 10,000 GPUs

« 400 Gb/s network

» Several weeks

 Trained on ~25 km high book of text

2023/10/24

Parameter Count (Billion)

10000

o]
o
=
o

=]
(=]
o

[
(=)

=)

0.01

Al and Memory Wall

10TB Baidu RecSys

2023/10/24

E &
i Transformer Size: 410x / 2 yrs Siwiteh Traraforras
[Al HW Memory: 2X / 2 yrs
- y y GShard Megatron-Turing
= ® B
i GPT-3
i &
g Microsoft T-NLG
J A100-80 (80GB) H100 (80GB)
Megatron LM @ @)
E V100 (32GB) TPUvV3 (32GB) ® ®
- ® @ ' A100 (40GB)
J P100 (12GB) ® GPT-2
il ® TPUv2 (16GB))
? BERT
g &
. . GPT-1
Inception V4 ResNext101 Transformer @
= © & @
1 ResNet50 DenseNet Al and Memory Wall
i] o0
| I 1]] I] 1 1 1 l I 1] |]] 1 I I I I ‘ 1} I] l 1 1
2016 2017 2018 2019 2020 2021 2022
YEAR

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Annual CPU Consumption [MHSO06years]

Run 3 [u=55) Run 4 (1=88-140) Run 5 (u=165-200)

50 L IA T 1 i T 1 T T T T ' LI — | 2“3 (u 55) | lRun4(u=BT-140) Runtl-”)(u=165—200|)
— ATL SPre Imlna — $ 3.5 I I ITLI SP I I I I I I I I I I I I I I I I I I _l
- 4w relnmlnary 2
2022 Computing Model CPU N - 2022 Computing Model - Disk s -
% [0 i =
1 £ 3 G-
40 . - & -
* Conservative R&D — 4 9 * Conservative R&D :
v Aggressive R&D o 1 2 25 v Aggressive R&D JUY 7 s =
30 (+10% +20% capacity/year) '/ N 2 (+10% +20% capacity/year) ko]
r | 1

“" 7

IIIIIIIIIlIIII'IIIIlIII

II|IIII|IIIIIIIIIIIIIIlIIIllI
<

03020 5022 5024 2026 2028 2030 5032 5034 5036 2020 2022 2024 2026 2028 2030 2032 2034 2036

Year Year

ATLAS Software and Computing HL-LHC Roadmap

... flat computing budget
Need innovation and new techniques to maintain physics research while
staying within throughout requirements!

2023/10/24

https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf

Todays algorithms will not be sustainable in future HEP
experiments such as HL-LHC, CEPC, ...
—->Need modern Machine Learning to become

Faster
Better

and do more

More complex architecture to deal with increased data complexity

2023/10/24

Al Algorithms Acceleration

Al has emerged as a solution to efficiently
analyze these massive data sets

GPUs and FPGAs allow Al algorithms to be
greatly accelerated

The combination of Al and these processors is
leading to a revolution in the way we analyze
data, minimizing the time needed to perform the
most advanced of analyses

A3D3: Accelerated Al Algorithms for Data-Driven

Discovery
« high energy physics, multi-messenger astrophysics, and
systems neuroscience

A3Da3 institute
[i |

1019_

Streaming data rate [B/s]

109

107}

FPGA/ASIC 1 PBlyr

LHC L1T puNE

| | |

1 TB/yr
N

CPU/GPU

LHC HLT
| oogle Cloud

LIGO ZIF

Neuroa “0 _

IceCube @ Netflix 4K UHD

1075

|
10-°

| | | | |
104 102 10 102 10* 106
Latency requirement [s]

A3D3 institue

https://a3d3.ai/about/

Al and FPGA application in Particle physics

v' Requirements

Low Latency Low resource usage High throughput
® Strictly limited by collisions ® Several algorithms in parallel on ® System processing ~5% of total
occurring every 25ns single device internet traffic

v' Al and FPGA has widely applied in trigger and data processing
® Trigger, ml for data compression

® Simulation, ml for data generation

® Data reconstruction and analysis

TRACKING

174 FPGAs MUONS.

v Why are FPGAS used?

Low Latency Power efficient
® Resource parallelism and pipeline parallelism! High bandwidth ® FPGAs up to ~10x more power efficient than
Latency deterministic GPU

® CPU/GPU processing randomness, FPGA repeatable and
predictable latency

How are FPGAs programmed?

Hardware Description Languages (HDLs) C. G+, Constraints/

algorithm Directives

HDLs are programming languages which describe electronic circuits

High Level Synthesis (HLS) [Mj
Vivado HLS ‘ y ‘
Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the design
Drastic decrease in firmware development time!

VHDL/Verilog

Currently we mainly use Xilinx Vivado HLS [*]

Firmware block

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

.7 2023/10/24

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

ddUl

f €) ONNX hls@m

. ‘AR
TensorFlow

PYTORcCH QIdERAS 1. Convert model into
internal representation

Model
(quantized/Pruned)

y

2. Write HLS project
targeting specified
backend

3. Run emulation . ' —

FPGA custom designs
4. Run synthesis (eg trigger algorithm)

Vivado/Vitis best supported
Intel Quartus
Intel One API

Mentor Catapult HLS COMPILER
available soon

ASIC/NPU

hls4ml

«HIls4ml: high level synthesis for machine learning
« hisdml is a package for translating neural networks to FPGA firmware for inference with

extremely low latency on FPGAs

v https://qithub.com/hls-fpga-machine-learning/hls4ml
v’ https://fastmachinelearning.org/hls4ml/ hIS 4 ml
v pip install his4ml

e hls4ml origins: triggering at (HL-)LHC
e Extreme collision frequency of 40 MHz — extreme data rates O(100 TB/s)
e Most collision “events” don’t produce interesting physics
¢ “Triggering” = filter events to reduce data rates to manageable levels

o hlsdml community is very active now ® ol .
« Tutorial | ?“‘5?8] .-
https://github.com/fastmachinelearning/hls4mi-tutorial

A
@ e \4 ' ol =0
o OL 105K
" / /d“ du Z’ﬁi - O'f'/ O
£ o, S {m,umn O,ﬁ/w
"8

' 2023/10/24

https://github.com/hls-fpga-machine-learning/hls4ml
https://fastmachinelearning.org/hls4ml/
https://github.com/fastmachinelearning/hls4ml-tutorial

Efficient NN design for FPGAs

FPGAs provide huge flexibility ﬁg:ftg:;ivmth

Performance depends on how well you FPGA resources
take aavantage of this Latency

Main methods to optimize the FPGA project

FPGA Operation Execution Parallelism

before pruning after pruning

pruning

synapses T 3 ---
s o wmm ww
eep Pipeline
. .« Floating-point Parallelism LI RE
pruning) » Scale ; ;
neurons q — " — 0p = Operation Execution
Gmin Z max +Data
Zero point +Time
Pruning: reduce number Quantization: reduce the Parallelization : tune
of neurons precision of the calculations (inputs, how much to parallelize to

weights, biases) make the inference faster

Ideally Reality

Quantization — QAT vs. PTQ

 Quantization is a common technique used to reduce model size, though it can sometimes

result in reduced accuracy

;
Pre-trained model

\,

I Training data
Quantization
' '
Retraining / Finetuning
Y

-

Quantized model

\,

r Pre-trained model] [Calibration data
| ! !
Calibration
ﬂuantf:atiun
v
Quantized model

QAT: Quantization Aware Training
The network is further trained for
few epochs in a process called Fine-
Tuning/Retraining.

Without/Less sacrificing accuracy

.7 2023/10/24

PTQ: Post-Training Quantization

The model's weights and activations are
quantized from high precision to low
precision, such as from FP32 to INT8
Does not consider for the loss of accuracy

Quantization — Symmetric vs. Asymmetric

Symmetric Asymmetric

Quantize: Q =clamp(round(R)) Quantize: Q =clamp(round(f'oat) Z)

Dequantize: R~ =S*Q Dequantize: R, .. =S* (Q + Z)
a=-1 0 a=-05 0 SZ =15
s, DU N -3 o 4—--—0--» o= - ==& ——— —p == - P
Y N V / Y Q

—-127 0 —128 0 127

023/10/24

Quantization — Per tensor vs. Per channel

| I | !
Output: y : : \ :
Per Tensor I | i : : :
) [4 | | !
The weights of each layer have the | taverN Fiter 1 1 : : '
i I I I
same scale and zero_point : /\ : :/\;
Layer N-1 ; | : :
I | | |

Filter 2

|‘/\l ,‘/\;
7 ™ | | | |
| I] |
Per Channel L Layer < J ' '

Filter 3

The weights of each channel have
Layer 1

the same scale and zero_point L J : v l
I | | |
Input: x : : : :

Filter C

Layerwise Channelwise
Quantization Quantization

7 2023/10/24

Physical case: Jet tagging

« Jet: collimated spray of hadrons initiated by energetic quarks or gluons, and they are
ubiquitous at a hadron collider

 Jet tagging: identifying the hard scattering particle that
initiates the jet, examples:

 heavy flavor tagging (bottom/charm)
» heavy resonance tagging (top/W/Z/Higgs)
 quark/gluon discrimination

— — — W—
« exotic jet tagging (displaced, 4-prong, ...) t>bW—bqq Z—aq a4 a/9 background

3-prong iet i , 2-prond iet no substructure
prong J 2-prong jet prong) and/or mass ~ 0

« The rise of machine learning (ML) has brought lots of new progresses to jet tagging

,/\//\. ParticleNet: jet tagging via particle clouds [arXiv:1902.08570]

PFN: Particle Flow Network based on the Deep Sets [arXiv:1810.05165]

>) 2023/10/24

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1810.05165

Workflow of ParticleNet

(Coordinaied) (Teatures) €
eSOy &
. \L \L . /ri]_ - - *_| ® aten::_slow_conv2d_forward
EdgeConv Block | ten native batch
k=16, C = (64, 64, 64) | o | CPU ® aten:native_batch_norm
J L@Eﬂiﬂ | @ aten:clamp_min
§ L . - _|= == == 1 @ aten:copy_
EdgeConv Block / | @® aten cat
| k=16, C = (128,128, 128) | I R @ zten-index
¢—l :] | @ aten:sum
-)
EdgeConv Block | - | @ aten:sub
MI-c =16, C = (256, 256, 256) | j | ® aten:topk
) ¥ J @ aten bmm
~ |
Global Average Pooling : J | @ atenempty
¥ |] |
Fully Connected | | 16§
256, RelU, Dropout = 0.1 FPGA
e, - I
¥ : a Accounts for ~70% of
Fully Connected .
2 | | the total time
: : | , |
ax \\\ | RelU /Jr

v Using heterogenous solution with CPU and FPGA

023/10/24

Quantization of ParticleNet

» The quantization policy combined with Symmetric, Post-Training and Per

tensor
« Symmetric: power-of-Two Quantization, scale = 2*

Parameters ACC Type
ParticleNet 993KB ~93.9% float32
ParticleNet-quantization 289KB ~93.3% Int8

ACC = (TP + TN)/(TP + TN + FP + FN)

correct: ©.933899998664856
IEHEMEEHIRE(SR), BRE—ERREN/MT 0.1 URITENEE:

Analysing Graphwise Quantization Error(Phrase 1):: 100%| | 32/32 [e0:00<00:00, 32.11it/s]
Analysing Graphwise Quantization Error(Phrase 2):: 100% 32/32 [00:91<00:00, 26.72it/s]

! 2023/10/24

Quantization implementation

Convert floating point calculation to fixed point calculation
ﬁ

X (128x128=1=1) ¥ {1284

scale = 0.25 |
| x scale = 0.0078125 | —~ ‘ x_scale = 0,00185312... *—_ | *

. - y_zero_point = 0
¥ zero_point =0 ¥_zerg_point = 0

Apy1 =4, OW, + B,

1%128%128=16

DequantizeLinear

AQn+1San+1 = ACInSan O, WCInSWn + BQnSbn

128=128x1x=1

1%128=128=16

AQn+1San+1 = (ACIn O, WQn)SanSwn + BCInSbn

1x128x128x16

1x128=128=18

. SanSwn
° 'ACIn+1 — (ACIn Q an + Bqn) I ’—m_‘

Sy = Sa Sw.

n

San+1

 2023/10/24

Quantization implementation (II)

Convert floating point calculation to fixed point calculation

Any 2* operation can be further simplified with

Sa,Sw,
AQni1 = (A9 O Wqn + Bqy) Sap.s shifting operations in hardware logic as:
S = 2%, therefore: RxXx2*=R<<|x|,x=0
Rx2*=R>>|x|,x <0
Sa.S
An wh’:;zan+wn_an+1 Sa SW
) n n
San+1 log - S
aAn+1

Aqni1 = (Agn O Wqy + Bqy)20ntVn=ant = an + Wn — dnyg

& 0 5023/10/24

Pipeline parallelism

I
input I(datal X data2) cee

S r | | DD
| | Layerl I
I Co Conv Layer I
| | Laer2
N |
| | :
|
| : Output | (Resultl X Result)
__ I
I
> AEsuEE Off-chip memory —————Total T—————>

e SNERAITEIIE]

FPGA processing element

[j FPGA buffer

v A customized architecture to make full use of the resources of the hardware
v Each convolution layer is calculated in parallel without the need to write
intermediate results back to external memory

pf_features

Nx7xn_pf

Conv

W {128x7x=1)
B (128)

| pf_mask |

W (128x128x1)
B {128)

Nx=1xn_pt

W (128x128x1)
B (128)

Quantization of PFN

[pfjeatures] [pffmask]

BatchNormalization

scale {7)
B (7}
mean {7}
var {7}

Conv

W {32x7x3)
B (32)

Conv

W (64x32x3)
B {64}

Parameters ACC Type
PFN 330KB ~89.6% float32
PFN-quantization 94KB ~88.1% Int8
PCNN 1.4MB ~89.6% float32
PCNN-quantization 367KB ~89.4% Int8

2023/10/24

FPGA as a coprocessor

- Inference for ML algorithms can be accelerated | Client Scheduler| | Al Inference Cluster
dramatically by running on coprocessors such as

FPGA, etc "‘1::~~“

 The most straightforward way to deploy algorithms RN | e

ModelA

(GPU/FPGA/IPU/
etc)

on coprocessors is to run workflows on machines
with FPGA coprocessors : ik
- But, “Direct connection” can be inefficient due to : 6l e

etc)

unbalanced assignment of workload L ModelC
« Inference cluster with a scheduler can be a good "" ModelD

solution to the problem, which will be a new cloud Clients Servers

service: Inference as a Service

_ o Portable Acceleration of CMS Mini-AOD Production with
« Eg: CMS SONIC (Services for Optimized Network Coprocessors as a Service

Inference on COpI‘O cessors) https://indico.cern.ch/event/1283970/contributions/5554352/

Summary

» The large science facilities such as CEPC generally produce massive data,
which brings unprecedent challenges to IT

« Machine learning (ML) based algorithms are becoming increasingly
common in HEP work flow

« FPGA as a coprocessor can accelerate the Al inference dramatically with
low latency and power consumption

« Some projects such as hls4ml greatly simplifies the difficulty of
programming

« We have tried to implement particleNet and other models on FPGA

2023/10/24

Acknowledgement

« The majority of the work was completed by our team members, including
Yutao Zhang, Yu Gao and so on. I thank them for their outstanding work.

« Some of the materials in this presentation are sourced from projects like
fastml and hils4ml, or Internet, and I would like to express my gratitude. If
there are any copyright concerns, please notify me.

2023/10/24

Thank you for your attention
chyd@ihep.ac.cn, lihailbo@ihep.ac.cn

