



# **Development of Transparent Ceramic and Glass Scintillators for Future HEP Applications**

## <u>Chen Hu<sup>1,2</sup></u>, Jiang Li<sup>1</sup>, Liyuan Zhang<sup>2</sup> and Ren-Yuan Zhu<sup>2</sup>

<sup>1</sup> Shanghai Institute of Ceramics, Chinese Academy of Sciences <sup>2</sup> California Institute of Technology

October 25, 2023

Presented in the CEPC2023, Nanjing University, Nanjing

## **SICC 5** 2019 DOE Basic Research Needs Study on Instrumentation: Calorimetry



**Priority Research Direction** 

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

# Fast/ultrafast, radiation hard and cost-effective inorganic scintillators are needed to achieve energy, spatial and timing resolutions required by BRN



## Fast and Ultrafast Inorganic Scintillators



See in **Snowmass Whitepaper**, arXiv: 2203.06788

|                                           | BaF <sub>2</sub>        | BaF <sub>2</sub> :Y | ZnO:Ga                    | Lu <sub>2</sub> O <sub>3</sub> :Yb | YAP:Yb                 | YAG:Yb                   | β-Ga <sub>2</sub> O <sub>3</sub> | PWO        | LYSO:Ce | LuAG:Ce    | YAP:Ce    | GAGG:Ce    | LuYAP:Ce         | YSO:Ce |
|-------------------------------------------|-------------------------|---------------------|---------------------------|------------------------------------|------------------------|--------------------------|----------------------------------|------------|---------|------------|-----------|------------|------------------|--------|
| Density (g/cm³)                           | 4.89                    | 4.89                | 5.67                      | 9.42                               | 5.35                   | 4.56                     | 5.94                             | 8.28       | 7.4     | 6.76       | 5.35      | 6.5        | 7.2 <sup>f</sup> | 4.44   |
| Melting points (°C)                       | 1280                    | 1280                | 1975                      | 2490                               | 1870                   | 1940                     | 1725                             | 1123       | 2050    | 2060       | 1870      | 1850       | 1930             | 2070   |
| X <sub>0</sub> (cm)                       | 2.03                    | 2.03                | 2.51                      | 0.81                               | 2.59                   | 3.53                     | 2.51                             | 0.89       | 1.14    | 1.45       | 2.59      | 1.63       | 1.37             | 3.10   |
| R <sub>м</sub> (cm)                       | 3.1                     | 3.1                 | 2.28                      | 1.72                               | 2.45                   | 2.76                     | 2.20                             | 2.00       | 2.07    | 2.15       | 2.45      | 2.20       | 2.01             | 2.93   |
| λ <sub>ι</sub> (cm)                       | 30.7                    | 30.7                | 22.2                      | 18.1                               | 23.1                   | 25.2                     | 20.9                             | 20.7       | 20.9    | 20.6       | 23.1      | 21.5       | 19.5             | 27.8   |
| Z <sub>eff</sub>                          | 51.0                    | 51.0                | 27.7                      | 67.3                               | 32.8                   | 29.3                     | 27.8                             | 73.6       | 63.7    | 58.7       | 32.8      | 50.6       | 57.1             | 32.8   |
| dE/dX (MeV/cm)                            | 6.52                    | 6.52                | 8.34                      | 11.6                               | 7.91                   | 7.01                     | 8.82                             | 10.1       | 9.55    | 9.22       | 7.91      | 8.96       | 9.82             | 6.57   |
| λ <sub>peak</sub> ª (nm)                  | 300<br>220              | 300<br>220          | 380                       | 370                                | 350                    | 350                      | 380                              | 425<br>420 | 420     | 520        | 370       | 540        | 385              | 420    |
| Refractive Index <sup>b</sup>             | 1.50                    | 1.50                | 2.1                       | 2.0                                | 1.96                   | 1.87                     | 1.97                             | 2.20       | 1.82    | 1.84       | 1.96      | 1.92       | 1.94             | 1.78   |
| Normalized<br>Light Yield <sup>a,c</sup>  | 42<br>4.8               | 1.7<br>4.8          | 6.6 <sup>d</sup>          | 0.95                               | 0.19 <sup>d</sup>      | <b>0.36</b> <sup>d</sup> | 6.5<br>0.5                       | 1.6<br>0.4 | 100     | 35º<br>48º | 9<br>32   | 190        | 16<br>15         | 80     |
| Total Light yield<br>(ph/MeV)             | 13,000                  | 2,000               | <b>2,000</b> <sup>d</sup> | 320                                | <b>57</b> <sup>d</sup> | <b>110</b> <sup>d</sup>  | 2,100                            | 130        | 30,000  | 25,000°    | 12,000    | 58,000     | 10,000           | 24,000 |
| Decay time <sup>a</sup> (ns)              | 600<br><mark>0.5</mark> | 600<br>0.5          | <1                        | 1.1ª                               | 1.5                    | 4                        | 148<br><mark>6</mark>            | 30<br>10   | 40      | 820<br>50  | 191<br>25 | 570<br>130 | 1485<br>36       | 75     |
| LY in 1 <sup>st</sup> ns<br>(photons/MeV) | 1200                    | 1200                | 610 <sup>d</sup>          | 190                                | 28 <sup>d</sup>        | <b>24</b> <sup>d</sup>   | 43                               | 5.3        | 740     | 240        | 391       | 400        | 125              | 318    |
| LY in 1 <sup>st</sup> ns<br>/Total LY (%) | 9.2                     | 60                  | 31                        | 61                                 | 49                     | 22                       | 2.0                              | 4.3        | 2.5     | 1.0        | 3.3       | 0.7        | 1.3              | 1.3    |
| 40 keV Att. Leng.<br>(1/e, mm)            | 0.106                   | 0.106               | 0.407                     | 0.127                              | 0.314                  | 0.439                    | 0.394                            | 0.111      | 0.185   | 0.251      | 0.314     | 0.319      | 0.214            | 0.334  |

<sup>a</sup> top/bottom row: slow/fast component; <sup>b</sup> at the emission peak; <sup>c</sup> normalized to LYSO:Ce; <sup>d</sup> excited by Alpha particles; <sup>e</sup> 0.3 Mg at% co-doping; <sup>f</sup> Lu<sub>0.7</sub>Y<sub>0.3</sub>AlO<sub>3</sub>:Ce.



# Why Scintillating Ceramics



- Ceramics provide a cost-effective solution for future HEP experiments.
  - Simple production technology;
  - High raw material usage;
  - Minimum after-growth mechanical processing.
- Unlike single crystal, ceramic fabrication does not require melting raw material.
  - Lower sintering temperature;
  - Dopants distribute homogeneously without segregation process;
  - Can be made into complex structure.







## **Cubic Structure Ceramics can be Transparent**



|                                                                       |                   | Crystal             |              | Density              |
|-----------------------------------------------------------------------|-------------------|---------------------|--------------|----------------------|
| Material                                                              | Form <sup>a</sup> | system <sup>b</sup> | Transparency | (g/cm <sup>3</sup> ) |
| Y <sub>1.34</sub> Gd <sub>0.6</sub> Eu <sub>0.06</sub> O <sub>3</sub> | С                 | С                   | Transparent  | 5.92                 |
| Gd <sub>2</sub> O <sub>2</sub> S:Pr,Ce,F                              | С                 | н                   | Translucent  | 7.34                 |
| Gd <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub> :Cr,Ce                | С                 | С                   | Transparent  | 7.09                 |
| BaHfO <sub>3</sub> :Ce                                                | С                 | С                   | Opaque       | 8.35                 |

Crystal system: C = cubic; H = hexagonal; M = monoclinic.

Cost-effective transparent ceramics are pursued by industry

Annu. Rev. Mater. Sci. 1997. 27:69-88



#### **Opaque or translucent**

Since 1928

SICCAS

Transparent



### Complex structure (rod, dome, sandwich etc.) can be fabricated with minimum after-growth processing

10/25/2023

# Background: Lu<sub>2</sub>O<sub>3</sub>:Yb Ceramics



#### $2005-1^{st}$ report on $Lu_2O_3$ : Yb ceramics

• Takaichi K et al., phys. stat. sol. (a) 202, R1-R3 (2005)

#### 2011—Lu<sub>2</sub>O<sub>3</sub>:Yb ceramics fabricated by hot-pressing method

• Sanghera J et al., Opt. Mater. 33, 670-674 (2011)

#### 2014—Lu<sub>2</sub>O<sub>3</sub>:Yb ceramics as a heavy and ultrafast scintillator

• Yanagida T et al., Opt. Mater. 36, 1044-1048 (2014)



### Excellent optical quality approaches theoretical transmittance observed in Lu<sub>2</sub>O<sub>3</sub>:Yb ceramic samples



10/25/2023



# **RMD Lu<sub>2</sub>O<sub>3</sub>:Yb Ceramic Samples**



Instruments 2022, 6(4): 67



| ID    | Dimension (mm <sup>3</sup> ) | Composition                        |
|-------|------------------------------|------------------------------------|
| RMD-2 | Ф9×1.5                       | Lu <sub>2</sub> O <sub>3</sub>     |
| RMD-3 | Ф9×1                         | Lu <sub>2</sub> O <sub>3</sub>     |
| RMD-5 | Ф9×1.5                       | (Lu,Y) <sub>2</sub> O <sub>3</sub> |
| RMD-6 | Ф9×1.5                       | (Lu,Y) <sub>2</sub> O <sub>3</sub> |
| RMD-7 | Ф9×2                         | (Lu,Y) <sub>2</sub> O <sub>3</sub> |
| RMD-8 | Ф9×1                         | $Lu_2O_3$                          |
| RMD-9 | Ф9×2                         | (Lu,Y) <sub>2</sub> O <sub>3</sub> |

|                        | Lu <sub>2</sub> O <sub>3</sub> | LYSO | BaF <sub>2</sub> | LuAG |
|------------------------|--------------------------------|------|------------------|------|
| Density<br>(g/cm³)     | 9.42                           | 7.4  | 4.89             | 6.76 |
| Melting<br>points (°C) | 2490                           | 2050 | 1280             | 2060 |
| X <sub>0</sub> (cm)    | 0.81                           | 1.14 | 2.03             | 1.45 |
| R <sub>M</sub> (cm)    | 1.72                           | 2.07 | 3.1              | 2.15 |
| λ <sub>ι</sub> (cm)    | 18.1                           | 20.9 | 30.7             | 20.6 |
| Z <sub>eff</sub>       | 68.0                           | 64.8 | 51.6             | 60.3 |
| dE/dX<br>(MeV/cm)      | 11.6                           | 9.55 | 6.52             | 9.22 |

Lu<sub>2</sub>O<sub>3</sub>:Yb is attractive to the HEP community: high density, ultrafast decay and large dE/dX. Single crystal growth is an expensive process due to its very high melting point. Ceramics are a promising approach.

10/25/2023



# **Emission and Transmittance**



Instruments 2022, 6(4): 67

Photo-luminescence and X-ray excited luminescence peaked at ~350 nm and ~550 nm (Lu,Y)<sub>2</sub>O<sub>3</sub>:Yb sample 6 show poor transmittance, probably due to increased scattering





## Light Output/Yield: Lu<sub>2</sub>O<sub>3</sub>:Yb Ceramics



Instruments 2022, 6(4): 67



10/25/2023

# SICCAS An MCP-PMT 240-Based Test Bench





Since 1928



### Rise, decay and FWHM obtained by fitting temporal response

10/25/2023

Presented by Chen Hu of SICCAS in the CEPC2023, Nanjing University, Nanjing, China

11

# **Decay Time: BaF<sub>2</sub> and Lu<sub>2</sub>O<sub>3</sub>:Yb**



Instruments 2022, 6(4): 67

### Decay time of 0.5 and 1.1 ns observed for BaF<sub>2</sub> crystals and RMD Lu<sub>2</sub>O<sub>3</sub>:Yb-3



Since 1928

SICCAS



## **Radiation Hardness: Lu<sub>2</sub>O<sub>3</sub>:Yb Ceramics**



Instruments 2022, 6(4): 67

Damage appears saturated after 5.1 Mrad. Dose rate dependence under study Light output loss is due to induced absorption with a mean light path of 3 mm





# Why LuAG Ceramics?



- Future inorganic scintillators:
  - Ultrafast and rad hard scintillators for HL-LHC & FCC-hh;
  - Ultrafast scintillators for high rate (Mu2e-II);
  - Ultrafast scintillators for GHz hard X-ray imaging in future free electron laser facilities (DMMSC).
- Millimeter slices of LYSO:Ce, BaF<sub>2</sub>:Y and LuAG:Ce survive the severe radiation environment expected at the HL-LHC with 3,000 fb<sup>-1</sup>:
  - Absorbed dose: up to 100 Mrad,
  - Charged hadron fluence: up to 6×10<sup>14</sup> p/cm<sup>2</sup>,
  - Fast neutron fluence: up to 3×10<sup>15</sup> n/cm<sup>2</sup>.
- LuAG ceramic slices are more cost-effective as compared to crystals :
  - Simpler production technology at a lower temperature;
  - Higher raw material usage; and
  - No need for after growth mechanical processing.



Screen

# Since 1928 Performance of LuAG:Ce Ceramics





Light output: 1,400 p.e./MeV with a fast decay time of about 50 ns and a slow decay time of about 1 µs. Excellent radiation hardness against ionization dose up to 220 Mrad.

Ca<sup>2+</sup> co-doping suppresses the slow component. F/T ratio, defined as LO(200 ns) /LO(3 μs), reaches 90%.

C. Hu, et al., NIMA 954 (2020) 161723

## LuAG Samples for Neutron/Proton Irradiation



### Mg<sup>2+</sup> co-doped LuAG:Ce ceramics show a higher light output Ca<sup>2+</sup> and Mg<sup>2+</sup> co-doped LuAG:Ce show a higher F/T ratio

### **Neutron Irradiation Samples**

Since 1928



### **Proton Irradiation Samples**



| Sample<br>ID                   | Dimension<br>(mm³)                                           | 200 ns L.O.<br>(p.e./MeV)                  | F/T ratio<br>(%)                                                                | Experiment                          | Fluence<br>(cm <sup>-2</sup> )                                                                                      |
|--------------------------------|--------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| n-1                            | Ф14.4×1                                                      | 1474                                       | 66.6                                                                            | LANSCE-7638                         | 1.7×10 <sup>15</sup>                                                                                                |
| n-2                            | Ф14.4×1                                                      | 1479                                       | 65.6                                                                            | LANSCE-7638                         | 3.4×10 <sup>15</sup>                                                                                                |
| n-3                            | Ф14.4×1                                                      | 1514                                       | 73.5                                                                            | LANSCE-7638                         | 6.7×10 <sup>15</sup>                                                                                                |
| Sampl <u>e</u>                 | Dimension                                                    | 200 ns L.O.                                | F/T ratio                                                                       |                                     | Fluence                                                                                                             |
| ID                             | (mm³)                                                        | (p.e./MeV)                                 | (%)                                                                             | Experiment                          | (cm-2)                                                                                                              |
| ID<br>p-1                      | <mark>(mm³)</mark><br>Φ14.4×1                                | (p.e./MeV)<br>1486                         | <b>(%)</b><br>74.2                                                              | CERN                                | (cm <sup>-2</sup> )<br>7.1×10 <sup>13</sup>                                                                         |
| ID<br>p-1<br>p-2               | (mm³)<br>Φ14.4×1<br>Φ14.4×1                                  | (p.e./MeV)<br>1486<br>1305                 | (%)<br>74.2<br>62.5                                                             | CERN                                | (cm <sup>-2</sup> )<br>7.1×10 <sup>13</sup><br>3.6×10 <sup>14</sup>                                                 |
| ID<br>p-1<br>p-2<br>p-3        | (mm <sup>3</sup> )<br>Ф14.4×1<br>Ф14.4×1<br>Ф14.4×1          | (p.e./MeV)<br>1486<br>1305<br>1283         | (%)<br>74.2<br>62.5<br>61.6                                                     | CERN<br>CERN<br>CERN<br>CERN        | (cm <sup>-2</sup> )<br>7.1×10 <sup>13</sup><br>3.6×10 <sup>14</sup><br>1.2×10 <sup>15</sup>                         |
| ID<br>p-1<br>p-2<br>p-3<br>p-4 | (mm <sup>3</sup> )<br>Ф14.4×1<br>Ф14.4×1<br>Ф14.4×1<br>Ф17×1 | (p.e./MeV)<br>1486<br>1305<br>1283<br>1013 | <ul> <li>(%)</li> <li>74.2</li> <li>62.5</li> <li>61.6</li> <li>88.0</li> </ul> | CERN<br>CERN<br>CERN<br>LANSCE-8051 | (cm <sup>-2</sup> )<br>7.1×10 <sup>13</sup><br>3.6×10 <sup>14</sup><br>1.2×10 <sup>15</sup><br>2.4×10 <sup>13</sup> |

## **Neutron Irradiation at East Port of LANSCE**





Since 1928

5

10/25/2023

### 1 MeV equivalent neutron fluence is 1.7, 3.4, and 6.7 × 10<sup>15</sup> cm<sup>-2</sup> for sample n-1, n-2, and n-3, respectively

| Particles                                         | n-1 Fluence (cm <sup>-2</sup> ) | n-2 Fluence (cm <sup>-2</sup> ) | n-3 Fluence (cm <sup>-2</sup> ) |
|---------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Thermal and Epithermal Neutrons (0 < En < 1 eV)   | 1.80×10 <sup>15</sup>           | 3.62×10 <sup>15</sup>           | 7.14×10 <sup>15</sup>           |
| Slow and Intermediate Neutrons (1 eV < En <1 MeV) | 6.57×10 <sup>15</sup>           | 1.32×10 <sup>16</sup>           | 2.60×10 <sup>16</sup>           |
| Fast Neutron Fluence (En > 1 MeV)                 | 7.26×10 <sup>14</sup>           | 1.46×10 <sup>15</sup>           | 2.88×10 <sup>15</sup>           |
| Very Fast Neutron Fluence (En > 20 MeV)           | 1.38×10 <sup>14</sup>           | 2.78×10 <sup>14</sup>           | 5.49×10 <sup>14</sup>           |
| 1 MeV Equivalent Neutron Fluence                  | 1.69×10 <sup>15</sup>           | 3.40×10 <sup>15</sup>           | 6.71×10 <sup>15</sup>           |
| Proton Fluence (Ep > 1 MeV)                       | 2.11×10 <sup>12</sup>           | 4.24×10 <sup>12</sup>           | 8.38×10 <sup>12</sup>           |
| Photon Dose (rad)                                 | 1.05×10 <sup>6</sup>            | 2.11×10 <sup>6</sup>            | 4.16×10 <sup>6</sup>            |

# LuAG:Ce after Neutron Irradiations



### Small losses in T/LO up to $6.7 \times 10^{15} n_{eq}$ /cm<sup>2</sup> with F/T ratio unchanged

Since 1928

SICCAS



# **ICC RIAC and LO vs. Neutron Fluence**

90% light output remains after an 1 MeV equivalent neutron fluence of  $6.7 \times 10^{15} n_{eq}/cm^2$ Radiation hardness of LuAG ceramics against neutrons is about a factor of two better than LYSO



10/25/2023







10/25/2023

Since 1928

SICCAS

# LuAG:Ce after Proton Irradiations



Small loses in T/LO after  $1.2 \times 10^{15}$  p/cm<sup>2</sup> by 24 GeV protons at CERN and after  $2.3 \times 10^{14}$  p/cm<sup>2</sup> by 800 MeV protons at LANSCE with F/T unchanged





## **RIAC and LO vs. Proton Fluence**

Radiation hardness of LuAG ceramics against protons is also a factor of two better than LYSO 90% light output remains after a proton irradiation fluence up to  $1.2 \times 10^{15}$  p/cm<sup>2</sup>



## **Calvision:** A Longitudinally Segmented Crystal ECAL



### Aiming at excellent EM and jet resolutions for Higgs Factory

Since 1928

SICCAS



### Since 1928 HHCAL : A Total Absorption Hadron Calorimeter







A. Para, H. Wenzel, and S. McGill in Callor2012 Proceedings;
A. Benaglia *et al.*, IEEE TNS 63 (2016) 574:
Jet energy resolution of 20%/√E is achievable by HHCAL with dual readout of S/C or dual gate

See presentations by H. Wenzel and M. Demarteau in this session

## Can we afford?



# **SICC** Inorganic Scintillators for HHCAL



|                                                   | BGO   | BSO   | PWO        | PbF <sub>2</sub> | PbFCI | Al <sub>2</sub> O <sub>3</sub> :Ti | AFO<br>glass            | DSB:Ce<br>glass <sup>1</sup> | BGS glass <sup>2</sup> | GS glass <sup>3</sup> | DSB:Ce,Gd<br>glass <sup>4,5</sup> | HFG<br>glass⁵ |
|---------------------------------------------------|-------|-------|------------|------------------|-------|------------------------------------|-------------------------|------------------------------|------------------------|-----------------------|-----------------------------------|---------------|
| Density (g/cm³)                                   | 7.13  | 6.8   | 8.3        | 7.77             | 7.11  | <b>3.98</b>                        | <b>4.6</b>              | 3.8                          | 4.2                    | 6.03                  | <b>4.7 - 5.4</b> <sup>d</sup>     | 5.95          |
| Melting point (°C)                                | 1050  | 1030  | 1123       | 824              | 608   | 2040                               | <b>980</b> <sup>7</sup> | <b>1420</b> <sup>8</sup>     | 1550                   | ?                     | <b>1420</b> <sup>8</sup>          | 570           |
| X <sub>0</sub> (cm)                               | 1.12  | 1.15  | 0.89       | 0.94             | 1.05  | 7.02                               | 2.96                    | 3.36                         | 2.61                   | 1.51                  | 2.14                              | 1.74          |
| R <sub>M</sub> (cm)                               | 2.23  | 2.33  | 2.00       | 2.18             | 2.33  | 2.88                               | 2.89                    | 3.52                         | 3.33                   | 2.51                  | 2.56                              | 2.45          |
| λ <sub>ι</sub> (cm)                               | 22.7  | 23.4  | 20.7       | 22.4             | 24.3  | 24.2                               | <b>26.4</b>             | 32.8                         | 31.9                   | 24.9                  | 24.2                              | 23.2          |
| Z <sub>eff</sub> value                            | 72.9  | 75.3  | 74.5       | 77.4             | 75.8  | 11.2                               | 42.8                    | 44.4                         | 51.2                   | 57.6                  | 48.7                              | 56.9          |
| dE/dX (MeV/cm)                                    | 8.99  | 8.59  | 10.1       | 9.42             | 8.68  | 6.75                               | 6.84                    | 5.56                         | 5.90                   | 7.95                  | 7.68                              | 8.24          |
| Emission Peak <sup>a</sup><br>(nm)                | 480   | 470   | 425<br>420 | ٨                | 420   | 300<br>750                         | 365                     | 440                          | 430                    | 396                   | 440<br>460                        | 325           |
| Refractive Index <sup>b</sup>                     | 2.15  | 2.68  | 2.20       | 1.82             | 2.15  | 1.76                               | ١                       | ١                            | /                      | ?                     | ١                                 | 1.50          |
| Relative Light<br>Output<br>by PMT <sup>a,c</sup> | 7,500 | 1,500 | 130        | ١                | 150   | 7,900                              | 450                     | ~500                         | 2,500                  | 800                   | 1,300                             | 150           |
| LY (ph/MeV) <sup>d</sup>                          | 300   | 100   | 30<br>10   | ١                | 3     | 300<br>3200                        | 40                      | 180<br>30                    | 400<br>90              | 1200<br>260           | 120, 400<br>50                    | 25<br>8       |
| Decay Time <sup>a</sup> (ns)                      | -0.9  | ?     | -2.5       | ١                | ?     | ?                                  | ?                       | -0.04                        | 0.3                    | ?                     | ?                                 | -0.37         |
| d(LY)/dT (%/∘C) <sup>d</sup>                      | 6.0   | 7.0   | 7.5        | 6.0              | ?     | 0.6                                | ?                       | 2.0                          | 2.0                    | ?                     | 2.0                               | high<br>cost  |

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of BGO

d. At room temperature (20°C) with PMT QE taken out.

10/25/2023

Presented by Chen Hu of SICCAS in the CEPC2023, Nanjing University, Nanjing, China

arXiv:2203.06731

Low density crystals/glasses



# Summary



- Future HEP experiments at the energy and intensity frontiers present stringent challenges to inorganic scintillators in radiation hardness, ultrafast time response and cost.
- Inorganic scintillators in ceramic form have attracted a broad interest due to its lower fabrication temperature, effective usage of raw material, and no need for aftergrowth mechanical processing.
- Lu<sub>2</sub>O<sub>3</sub>:Yb transparent ceramics show PL and XEL emission peaked at ~350 and ~550 nm.
- Lu<sub>2</sub>O<sub>3</sub>:Yb ceramics show light yield up to 320 ph/MeV with negligible slow component. Mixing Lu<sub>2</sub>O<sub>3</sub> with Y<sub>2</sub>O<sub>3</sub> appears increase light yield in 200 ns to 500 ph/MeV with significant slow component of 100 and 2,500 ns decay time.
- Sub-nanosecond decay time of 1.1 ns was observed by using MCP-PMT.
- Mg<sup>2+</sup> co-doping in LuAG ceramics improves light output, while Ca<sup>2+</sup> and Mg<sup>2+</sup> co-doping improves F/T ratio.
- LuAG ceramics were found to have a factor of two better radiation hardness than LYSO crystals against both neutrons and protons. With 90% of the light output remains in 1 mm thick samples after neutron and proton irradiation up to 6.7×10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup> and 1.2×10<sup>15</sup> p/cm<sup>2</sup> respectively it is promising for applications at the HL-LHC and FCC-hh.
- R&D is needed for cost-effective mass produced inorganic scintillators such as scintillating glass.

### Acknowledgements: DOE HEP Award DE-SC0011925 and SBIR Award DE-SC0021686