

Development of TaichuPix pixel chips for the first CEPC vertex detector prototype

Ying Zhang

On behalf of the CEPC Vertex detector study team *Institute of High Energy Physics, Chinese Academy of Sciences

2023 International workshop on the High Energy Circular Electron Positron Collider (CEPC) Oct 23-27, 2023

Vertex detector: Physics goal

Physics motivation

- > Higgs precision measurement
- > $H \rightarrow bb$ precise vertex reconstruction
- > $H \rightarrow \mu\mu$ (precise momentum measurement)

Need tracking detector with high spatial resolution

Project MOST2 target: produce the first vertex detector prototype

- Spatial resolution 3~5 µm (pixel detector)
- Radiation hard (> 1 MRad)

CEPC Vertex detector conceptual design (2016)

Main technology

This project

First vertex detector prototype

- > High spatial resolution technology \rightarrow design high granularity pixel chip
- Radiation resistance technology
- > Detector module prototyping and assembly technology

Main specifications of the full-scale chip

Bunch spacing

- > Higgs: 680 ns; W: 210 ns; Z: 25 ns
- Max. bunch rate: 40 M/s

Hit density

- 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z
- Cluster size: ~3 pixels/hit
 - > Epi-layer thickness: ~18 µm
 - > Pixel size: $25 \mu m \times 25 \mu m$

Hit Density vs. VXD Radius

Ref: CEPC Conceptual Design Report, Volume II

For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 MRad	Data rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns for 98% efficiency	Chip size	~1.4 × 2.56 cm ²

TaichuPix prototypes overview

- Motivation: a large-scale & full functionality pixel sensor for the first 6-layer vertex detector prototype
- Major challenges for design
 - > Small pixel size \rightarrow high resolution (3-5 μ m)
 - > High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole
 - Radiation tolerance (per year): 1 MRad TID
- Completed 3 rounds of sensor prototyping in a 180 nm CMOS process
 - > Two MPW chips (5 mm × 5 mm)
 - TaichuPix-1: 2019; TaichuPix-2: 2020 \rightarrow feasibility and functionality verification
 - > 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023

Pixel architecture – Analog

Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp with a step of 25 ns.

- Digital-in-Pixel scheme: in pixel discrimination & register
- Pixel analog is derived from ALPIDE (and benefit from MIC4 for MOST1)
 - > As most of ATLAS-MAPS sensors' scheme
- Biasing current has to be increased, for a time walk of ~25 ns
 - > for 40 MHz BX @ Z pole
- Consequence:
 - > Power dissipation increased
 - > Fast charge collection needed

TaichuPix sensor architecture

Architecture of the full-scale TaichuPix

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- > Time stamp added at end of column (EOC)
- > Readout time: 50 ns for each pixel

2-level FIFO scheme

- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

> On-chip bias generation, LDO, slow control, etc.

Full size sensor TaichuPix-3

- 12 TaichuPix-3 wafers produced from two rounds
 - > Wafers tested on probe-station \rightarrow chip selecting & yield evaluation

8-inch wafer

Probe card for wafer test

An example of wafer test result (yield ~67%)

Wafers thinned down to 150 µm and diced

Wafer after thinning and dicing

Thickness after thinning

Threshold and noise of TaichuPix-3

- Pixel threshold and noise were measured with selected pixels
 - S-curve method was used to test and extract the noise and the threshold
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻ @ nominal bias setting

 Power dissipation of 89 ~ 164 mW/cm² tested @ 40MHz clk with different biasing condition

Performance at different temperatures

- TC3 shows a normal functionality @ -20 ~ 70 °C
- Main performance (i.e. threshold, noise, fake hit rate) can satisfy the requirements @ -20 ~ 70 °C
- Threshold and noise fluctuate with T, probably attribute to the fluctuation of pixel biasing

24/10/2023, TaichuPix chips for CEPC VTX, CEPC2023

TaichuPix-3 telescope

The 6-layer of TaichuPix-3 telescope built

> Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board

6-layer TaichuPix-3 telescope

Setup in the DESY testbeam

- > TaichuPix-3 telescope in the middle
- > Beam energy: 4 GeV mainly used
- Tests performed for different DUT (Detector Under Test)

\geq

Detector efficiency

4 GeV e

DUT_B

6.5

6

Decreases with increasing the threshold, detection efficiency >99.5% at threshold with best resolution

X-direction

Output Provide the Head of the Head of

Distribution of residual X

Events

Spatial resolution

- Gets better when decrease the pixel threshold, due to the increased cluster size
- A resolution $< 5 \mu m$ achieved, best resolution is 4.78 µm

TaichuPix-3 beam test result

Ladder readout design

- Detector module (ladder) = 10 sensors + readout board + support structure + control board
 - > Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support
 - > Signal, clock, control, power, ground will be handled by control board through flexible PCB

Challenges

- > Long flex cable \rightarrow hard to assemble & some issue with power distribution and delay
- > Limited space for power and ground placement \rightarrow bad isolation between signals

Solutions

 Read out from both ends, readout system composes of three parts, careful design on power placement and low noise

Detector prototype

- 6 double-sided layers assembled on the detector prototype
 - > 12 flex boards with two TaichuPix-3 chips bonded on each flex
 - > Readout boards on one side of the detector

Summary

- The full-scale and high granularity pixel prototype, TaichuPix-3, has been designed and tested for CEPC VTX R&D
 - > Spatial resolution of 4.78/4.85 µm measured with 4 GeV electron beam in DESY
 - > Total ionization dose (TID) > 3 Mrad
- Readout electronics for the sensor test and the ladder readout were developed
 - > Performed the sensor characterization in the lab successfully
 - Completed beam tests for the pixel sensor prototype and the vertex detector mechanical prototype

Concept (2016)

1st Vertex detector prototype (2023)

Thank you very much for your attention !