

Jie Zhang (IHEP) and Lei Zhang (NJU) on behalf of the ATLAS HGTD Group

2023 International Workshop on the High Energy Circular Electron Positron Collider Nanjing, China, Oct 24, 2023

INTRODUCTION

- High Granularity Timing Detector (HGTD)
 - Silicon detector with coarse spatial resolution but precise timing
 - ~3.6 million 1.3×1.3 mm² pixels with Low-Gain Avalanche Detector (LGAD) technology
 - 6.1 m² active area
- Pileup rejection
 - Time resolution at the start (end): 30 (50) ps per track / 35 (70) ps per hit
- Luminosity measurement
 - Count number of hits at 40 MHz (bunch-by-bunch)
 - Goal for HL-LHC: 1% luminosity uncertainty
- Detector structure
 - Two end-caps
 - $z \approx \pm 3.5$ m from the nominal interaction point
 - 110 < r < 1000 mm</p>
 - Active detector region: 2.4 < |η| < 4.0
 - Each end-cap
 - Two instrumented disks, rotated by 15°

INTRODUCTION

- Each instrumented disk:
 - Double-sided layers mounted on a cooling plate
 - 3 ring layout for front-end modules
- Front-end module
 - Flex PCB
 - Two LGAD sensors
 - Two ASICs
 - ATLAS LGAD Timing Integrated Read-Out Chips (ALTIROC)
 - Radiation tolerance for modules
 - Up to 8.3×10^{15} 1MeV neq/cm², 7.5 MGy

The schematic drawing shows the overlap between the modules on the front and back of a cooling disk. There is a sensor overlap of 20% for r > 470 mm, 54% for 230 mm < r < 470 mm and 70 % for r < 230 mm.

OVERVIEW OF HGTD READOUT ELECTRONICS

- On-detector
 - Front-end modules
 - Flex tail cables
 - Peripheral Electronics Boards (PEB)
- Off-detector
 - Data Acquisition System (DAQ)
 - Luminosity System
 - Timing, Trigger and Control (TTC)
 - Detector Control System (DCS)
 - Low Voltage (LV)/High Voltage (HV) system
 - Interlock system

Basic functions of PEB

- Control, monitoring & data aggregation and transmission
- Power-supply distribution: LV & HV
- Thermistor connection between the front-end modules and the interlock system

HGTD electronics architecture

OVERVIEW OF HGTD READOUT ELECTRONICS

- On-detector
 - Front-end Modules
 - Flex PCB: Designed and produced by IHEP (100%)
 - Flex tail cables
 - Designed by Mainz
 - Produced by CERN/MAScIR, Shandong University (33.6% of the cost), Mainz, JSI
 - Peripheral Electronics Boards (PEB)
 - Designed by IHEP, NJU (Nanjing University) and Morocco group
 - Produced by IHEP (50%) and NJU (50%)

HGTD electronics architecture

CHALLENGES TO ON-DETECTOR ELECTRONICS

Basic functions of PEB

- Control, monitoring & data aggregation and transmission
 - 8032 front-end modules
 - Clock and fast command distribution
 - Up to 50k analog monitoring
 - TOT/TOA data, up to 10 Tbps to TDAQ, on average, 63 Gbps per PEB
- LV & HV power-supply distribution
 - Low noise, heat dissipation, system level shielding and grounding considerations
- Thermistor connection between the front-end modules and the interlock system
 - 896 Negative Temperature Coefficient (NTC) sensors to monitor disk temperature
- Area and height restrictions
 - Limited surface area for connectors, chips and power blocks
 - Height < 10 mm, hard to find low-profile air-core inductors and connectors

Radiation tolerance for PEB

	From simulation	Safety factor	Design requirement
Si 1 MeV neutron equivalent	$< 1.4 \text{ x } 10^{15} \text{ neq} / \text{cm}^2$	1.5 x 1.3	$2.73 \ge 10^{15} \text{ neq} / \text{cm}^2$
Fluence of hadrons > 20 MeV	$< 0.32 \text{ x} 10^{15} \text{ neq} / \text{cm}^2$	1.5 x 1.3 x 2	$1.25 \ x \ 10^{15} \ neq \ /cm^2$
TID	< 36 Mrad (0.36 MGy)	1.5	54 Mrad (0.54 MGy)

- Magnetic field
 - Åmplitude: 0.382 T ~ 0.433 T
 - Angle 23.1° ~ 32.3°
- Operating Temperature:
 - On disk (with front-end modules and CO2 cooling): -35 $^\circ\!\mathrm{C}$ ± 5 $^\circ\!\mathrm{C}$
 - Testing/debugging (with cooling): -40 $^\circ C$ to 55 $^\circ C$

Top view of PEB 1F

CONCEPTUAL DESIGN OF PEB

- Two LV channels
 - Each up to 12A @ 12V
- Up to 3 modules share two bPOL12v
 - One for analog power, the other for digital power
- One TDAQ lpGBT and 1~2 luminosity lpGBTs share one VTRx+
- Control
 - I2C of lpGBT
 - Module and VTRx+ configuration
 - I2C0 of TDAQ lpGBT is connected to the VTRx+ only
 - Output
 - Module reset
 - Module power on/off
 - MUX64 channel selection
- Monitoring
 - ADC of lpGBT
 - Module state monitoring
 - VDDA, VDDD, GNDA, PROBE0/1(internal state and temperature), NTC
 - PEB state monitoring
 - lpGBT voltage, temperature
 - VTRx+ RSSI(average optical power of the received light) and NTC
 - bPOL12v temperature
 - On board NTC
 - Input of lpGBT
 - bPOL12v power good signal

Each lpGBT has a 8 channel multiplexed ADC. With ~7 modules/lpGBT, an external 64-to-1 MUX is required: MUX64

Bi-directional slow control and

the IC and EC channels.

monitoring communication between

the FELIX and the lpGBT is done via

bPOL12V:

DGBT:

provide the 1.2V analog and digital voltages for the ALTIROCs

DC/DC CONVERTER

Bpol12V generates analog and digital 1.2V to the front-end modules

- Height limitation in HGTD
 - < 10 mm (Including PCB and shielding case)</p>
 - Selection for air-core inductor
 - Custom solenoid coil

- Tested in low temperature (-35 °C), OK
- Tested in magnetic field, up to 4 T, OK

BPOL12V test system in magnetic field

Aachen module

CERN module (FEASTMP)

ITK EoS

Commercial inductor

HGTD

Inductor candidates

Efficiency and ripple with respect to *lout* in magnetic field

Thanks to CSNS Associated

Platform (APEP) for beam

Proton Experimental

MUX64 PRODUCTION

Wire-bonding.

test board

Bare dies

Reliability test

- High Temperature Operating Life (HTOL)
 - 32 samples, 85 °C, 16days, All pass HTOL
- Temperature Cycle (TC)
 - 48 samples
 - -40 °C to 85 °C
 - 4 batches launched, more than 100 cycles per batch, pass TC
- Irradiation test

Proton beam

- Beam energy: 80 MeV.
- Spot size: 20 x 20 mm²
- Measured injection rate: 1.89 × 10⁹ pps/cm²
- 2 samples, irradiation time: 9.4 days, all pass test

X-ray

- Instrument model: MultiRad160
- TID dose rate: up to 5 Gray/s
- 5 samples, pass TID test

	Requirement	Tested
Si 1MeV n_{eq} fluence	$2.5 \ge 10^{15} n_{eq}/cm^2$	$3.21 \times 10^{15} n_{eq}/cm^2$
TID	0.54 M Gy	0.75 M Gy

About 2000 pcs under production

QFN packaging

(

LPGBT FEATURE

- TDAQ interface
 - PEB uses 10.24 Gbps with FEC5
- Front-end interface
 - Up to 28 eclks
 - Up to 28 elinks for data-up

Data-up	320Mbps	640Mbps	1.28Gbps
EDINy0	\checkmark	\checkmark	\checkmark
EDINyl	\checkmark	×	×
EDINy2	\checkmark	\checkmark	×
EDINy3	\checkmark	×	×

Note: y=0,...,6

- Up to 16 elinks for data-down
 - 4 groups
 - 4 channels in the one group have the same data ("mirror" function) at 320 Mbps
- Up to 3 I2C buses
- Up to 16 GPIOs

ATLAS S

DEMONSTRATION SYSTEM

- Complete the prototype demonstration system
- The full chain readout from the front-end modules to back-end TDAQ system
- Delivered to CERN, Nikhef and KTH

COMMUNICATION TEST

- Elink Skew and Jitter
 - 40 MHz for ALTIROC2, 320 MHz for ALTIROC3
 - Jitter < 9 ps</p>

FELIX and modular PEB		Jitter (ps)			Duty		Skew between clk and fast- cmd (ns)				
ECLK	40MHz	320MHz	640MHz	40MHz	320MHz	640MHz	40MHz	320MHz	640MHz		
Test points on PEB (without flex tail)	5.256	6.473	6.291	50.20%	50.95%	51.32%	1.353	1.446	0.020		
Test points on bare module flex with 70 cm flex tail (without ALTIROC)	7.314	7.586	7.254	50.19%	50.90%	51.28%	1.498	1.489	0.099		
Test points on digital module with 70 cm flex tail (with ALTIROC)	8.052	7.863	7.747	50.19%	50.88%	50.87%	1.550	1.548	0.119		

- Elink Bit Error Rate Test (BERT)
 - Down link @ 320 Mbps, BERT < 10^{-12}
 - Up link @ 1.28 Gbps, BERT < $5 \ge 10^{-13}$

Elink skew and jitter tests

Elink BER test with long flex tail and module

Optical link

Pre-emphasis parameters in lpGBT and VTRX+

VTRX+		lpGBT						
Parameters	Range	Parameters	Range					
Bias Current	0~127	LDModulationCurrent	0~127					
Modulation enable	0,1	LDEmphasisEnable	0,1					
Modulation Current	0~127	LDEmphasisAmp	0~127					
Pre-emphasis amplitude	0~7	LDEmphasisShort	0,1					
Rising edge pre-emphasis enable	0,1							
Falling edge pre-emphasis enable	0,1							

Developed automatic scripts to get the best config

Optical Eye Diagram tests 12 @ 10.24 Gbps

PEB 1F DESIGN

Peripheral board	Modules	lpGBT	bPOL12v	MUX	VTRx+
1F	55	9+3	52	9	9

Total thickness: 2.5 mm

Center to center distance:

52 bPOL12v power blocks

• Size: 24 mm x 14.5 mm

Height above PCB:

Height under PCB:

55 FPC connectors

6.5 mm

 $5 \,\mathrm{mm}$

 $2 \,\mathrm{mm}$

Complex PCB

- High speed, low loss multi-layer material
 - Impedance control
- Halogen free
 - EM-890 or IT-170/988 or R-5375(E)
- Symbols and nets
 - 3140 components, 10953 connections
- 22 layers PCB for PEB 1F, includes:
 - 8 layers for signals
 - 2 layer for HV and HV return ground
 - 4 layers for ground
 - 8 layers for power
- HDI (High Density Interconnector)

				-	
	Unplaced symbols:		0/3386	0%	
	Unrouted nets:		0/3702	0%	
	Unrouted connections	s:	0/12996	0%	
Sha	pes				
	Isolated shapes:		0		
	Unassigned shapes:		0		
	Out of date shapes:		0/397	Updat	e to Smooth
Dy	namic fill:	Smooth	n O Ro	ough (🔿 Disabled
DR	Cs				
	DRC errors: Up To D	ate	0	Upd	late DRC
	Shorting errors:		0		ine DBC
	Waived DBC errors:		0	01 OIA	ine Dric
	Waived shorting	errors:	0		
Stat	istics				
La	st saved by:		palzh		
Ed	iting time:	947 hours	3 minutes	I	Reset

VIPPO / POFV: Via-in-Pad Plated Over PCB

CONCLUSION AND OUTLOOK

- PEB 1F prototype under production
- HGTD on-detector electronics moving towards the FDR phase
- Focus on the full demonstrator
 - Electronics : 54 modules mounted on 4 support units + flex tails + PEB 1F + LV + HV
 - Cooling plate prototype
 - Detector assembly
 - TDAQ + Lumi. DAQ + DCS

Many challenges ahead, but remarkable technical progress achieved

Many challenges ahead, but remarkable technical progress achieved

FI01DU loaded at LPNHE Paris and send to CERN

PERIPHERAL ELECTRONICS BOARDS (PEB)

One quadrant of the two instrumented disks. The PEBs (in green) are attached to the readout rows

- Six types of PEB to be designed (front and back side)
 - Board 1F, 2F, 1B and 2B can be used both on front and back
 - According to the optimization of mirror structure for module layout
 - Each board covers three or more readout rows in order to have a similar number of modules
- The front-end modules are connected via flex tails, arranged in rows, to the PEB @ 660 < r < 920 mm

PEB	Front side	Back side
1F	54 modules	55 modules
2 F	52 modules	56 modules
3 F	39 modules	-
3 B	-	39 modules
2B	52 modules	48 modules
1B	54 modules	53 modules

Number of modules attached to the different PEBs at the front and back sides

• 80 boards per HGTD vessel, thus 160 boards in total.

PEB	1F	2 F	3 F	3 B	2 B	1 B
Total Qty.	32	32	16	16	32	32

GROUNDING & SHIFLDING

- Single point connection
 - The hermetic vessel acts as the Faraday cage, which is referenced to the experiment ground by a single dedicated copper braid per end cap.
- Each PEB will have be referenced to the Faraday cage by one single low ohmic strap to the conductive layer of the outer ring.
 - The modules and the PEB shall have thermal conductive connection to the cooling plate but be electrically isolated from the cooling plate.
- The stage2 LV supplies are referenced to ground by their return lines being connected to the ground planes of the PEB which they supply.
- The HV at each module is then referenced to ground through the analog ground plane at the module end.

LPGBT FLINK ASSIGNMENT IN HGTD

Model ID	lpGBT Elinks	Mix230	Mix150	Mix310	Mix046(with lumi)	Mix00D(with 2 lumi)
M 0	ECLKO, EDINOO, EDIN10, EDOUTOO	1280, P0, I2C1	1280, P0, I2C1	1280, P0, I2C1	640, P0, I2C1	320, P0, I2C1
M1	ECLK1, EDIN01, EDIN11, EDOUT01	-	-	-	-	320, P0, I2C1, L640
M2	ECLK2, EDIN02, EDIN12, EDOUT02	-	-	-	640, P0, I2C1	320, P1, I2C2, L640
M 3	ECLK3, EDIN03, EDIN13, EDOUT03	-	-	-	-	320, P1, I2C2, L640
M4	ECLK4, EDIN20, EDIN30, EDOUT10	1280, P0, I2C1	640, P0, I2C1	1280, P0, I2C1	640, P1, I2C2	320, P2, L_I2C0, L640
M 5	ECLK5, EDIN21, EDIN31, EDOUT11	-	-	-	-	320, P2, L_I2C0, L640
M 6	ECLK6, EDIN22, EDIN32, EDOUT12	-	640, P0, I2C1	-	640, P1, I2C2, L640	320, P2, L_I2C0, L640
M7	ECLK7, EDIN23, EDIN33, EDOUT13	-	-	-	-	320, P3, L_I2C1, L640
M 8	ECLK8, EDIN40, EDIN50, EDOUT20	640, P1, I2C2	640, P1, I2C2	1280, P0, I2C1	320, P2, L_I2C1, L640	320, P3, L_I2C1, L640
M 9	ECLK9, EDIN41, EDIN51, EDOUT21	-	-	-	320, P2, L_I2C1, L640	320, P3, L_I2C1, L640
M10	ECLK10, EDIN42, EDIN52, EDOUT22	640, P1, I2C2	640, P1, I2C2	-	320, P2, L_I2C1, L640	320, P4, L_I2C2, L640
M11	ECLK11, EDIN43, EDIN53, EDOUT23	-	-	-	320, P3 L_I2C2, L640	320, P4, L_I2C2, L640
M12	ECLK12, EDIN60, EDIN62, EDOUT30	640, P1, I2C2	640, P1, I2C2	640, P1, I2C2	320, P3 L_I2C2, L640	320, P4, L_I2C2, L640
M13	ECLK13, EDIN61, EDIN63, EDOUT31	-	-	-	320, P3 L_I2C2, L640	-

Basic patterns used in PEB, Mix XYZ

- X: number of module run 1.28 Gbps,
- Y: number of module run 640 Mbps,
- Z: number of module run 320 Mbps

PEB 1F ROUTING

VOLTAGE DROP SIMULATION FOR PEB PLAN

6

T a

ERIMEN

33 35 37 39 41 43 45 47 49 51 53 55

Simulation result

\succ Less than 12 m Ω

27 29 31

PEB POWER SETTINGS

Output voltage selection

The output voltage is determined by the choice of the 2 resistors in voltage divider configuration between Vout and gnd (Figure 1). In doing so, it is important to know as precisely as possible the value of the reference voltage (Vref) to the Error Amplifier. The production lot has been tested and the average value of the Vref is 630mV with st dev of 7mV (calculated over 3175 samples in January 2022) The formula to calculate the proper R selectable for a wanted Vout Vout and given the Vref as above is: Rsel=500KOhm*Vref/(Vout-Vref)

Required output of bPol12V and R_sel determination

Power P	lane_PEB	Row	Module	Elex Distance	R_PE	Bpath(m	Ω)	R_flex	TailPath(mΩ)	R_F	PC(mΩ)		working c	urrennt(A)	Tota drop	al IR (mV)	Variatio out	n_bPol_ put	bPol_o	tput(V)	R1_bPol	R_sel_bPc	ol12V(kΩ				
Analog	Digital		Module	Module	Winduie			Thex Distance	Analog	Digital	GND	Analog	Digital	GND	Analog	Digital	GND	Analog_Max	Digital_Max	Analog	Digital	Analog	Digital	Analog	Digital	12V(kΩ)	Analog	Digital
		1	18	637.6	7.8	5.0	1.8	116.7	117.5	32.3	12.7	12.1	5.8	0.833	1.167	162.9	224.6	1.7%	1.8%	1.589	1.654	499	328	307				
PA0_344503	PD0_344507	1	17	605.5	8.0	5.1	2.2	110.8	111.6	30.6	12.7	12.1	5.8	0.833	1.167	157.2	216.4	1.7%	1.8%	1.584	1.645	499	330	310				
		2	16	582.2	9.2	7.0	2.2	106.5	107.3	29.5	12.7	12.1	5.8	0.833	1.167	153.7	212.1	1.7%	1.8%	1.580	1.641	499	331	311				
PA0 204580	PD0 344507	1	16	573.2	5.2	3.4	2.7	104.9	105.6	29.0	12.7	12.1	5.8	0.833	1.167	149.0	206.1	1.6%	1.7%	1.575	1.633	499	333	313				
TA0_234500	100_044007	1	15	541.1	5.3	3.4	3.0	99.0	99.7	27.4	12.7	12.1	5.8	0.833	1.167	143.1	197.7	1.6%	1.7%	1.569	1.625	499	335	316				
PA1_17040112	PD1_17040121	1	14	509	4.0	4.1	3.3	93.1	93.8	25.8	12.7	12.1	5.8	0.833	1.167	136.0	190.0	1.6%	1.6%	1.561	1.616	499	338	319				
		1	13	476.9	8.2	5.4	3.7	87.3	87.9	24.1	12.7	12.1	5.8	0.833	1.167	133.5	183.1	1.7%	1.8%	1.559	1.612	499	338	320				
PA1_294756	PD1_294764	1	12	441.9	8.4	5.5	3.8	80.9	81.4	22.4	12.7	12.1	5.8	0.833	1.167	127.0	173.9	1.7%	1.8%	1.553	1.602	499	341	323				
		1	11	406.9	8.5	5.5	4.0	74.5	75.0	20.6	12.7	12.1	5.8	0.833	1.167	120.4	164.6	1.7%	1.8%	1.546	1.593	499	343	327				
PAO	PDO	1	10	371.8	5.9	3.9	4.2	68.0	68.5	18.8	12.7	12.1	5.8	0.833	1.167	111.6	153.3	1.6%	1.7%	1.537	1.579	499	347	331				
FAU	FDO	1	9	336.8	6.0	4.0	4.3	61.6	62.1	17.0	12.7	12.1	5.8	0.833	1.167	105.0	143.9	1.6%	1.7%	1.530	1.570	499	349	334				
DA1	PD1	1	8	301.8	5.7	3.7	4.5	55.2	55.6	15.3	12.7	12.1	5.8	0.833	1.167	98.1	134.2	1.6%	1.7%	1.523	1.560	499	352	338				
FAI	FUI	1	7	266.8	5.8	3.8	4.6	48.8	49.2	13.5	12.7	12.1	5.8	0.833	1.167	91.4	124.8	1.6%	1.7%	1.516	1.551	499	355	342				
		1	6	231.8	9.1	5.4	4.7	42.4	42.7	11.7	12.7	12.1	5.8	0.833	1.167	87.5	117.2	1.7%	1.8%	1.513	1.544	499	356	344				
PA2	PD2	1	5	196.8	9.4	5.5	4.8	36.0	36.3	10.0	12.7	12.1	5.8	0.833	1.167	80.9	107.8	1.7%	1.8%	1.506	1.535	499	359	347				
		1	4	155.6	9.5	5.5	4.9	28.5	28.7	7.9	12.7	12.1	5.8	0.833	1.167	73.1	96.7	1.7%	1.8%	1.498	1.524	499	362	352				
		1	3	114.5	9.3	5.4	4.9	21.0	21.1	5.8	12.7	12.1	5.8	0.833	1.167	64.9	85.4	1.7%	1.8%	1.490	1.512	499	366	356				
PA3	PD3	1	2	73.4	9.6	5.6	5.0	13.4	13.5	3.7	12.7	12.1	5.8	0.833	1.167	57.2	74.3	1.7%	1.8%	1.482	1.501	499	369	361				
		1	1	32.4	9.7	5.6	5.0	5.9	6.0	1.6	12.7	12.1	5.8	0.833	1.167	49.3	63.2	1.7%	1.8%	1.474	1.489	499	373	366				
		2	18	646.6	9.8	6.8	1.5	118.3	119.2	32.7	12.7	12.1	5.8	0.833	1.167	166.1	228.8	1.7%	1.8%	1.593	1.658	499	327	306				
PA0_329829	PD0_329833	2	17	614.5	10.1	6.9	1.9	112.5	113.3	31.1	12.7	12.1	5.8	0.833	1.167	160.4	220.5	1.7%	1.8%	1.587	1.650	499	329	308				
		3	15	544	12.0	7.5	2.4	99.6	100.3	27.5	12.7	12.1	5.8	0.833	1.167	148.7	202.5	1.7%	1.8%	1.575	1.631	499	333	314				
DA0 214960	000 014964	2	15	550.1	5.4	3.7	2.5	100.7	101.4	27.8	12.7	12.1	5.8	0.833	1.167	144.5	199.9	1.6%	1.7%	1.570	1.627	499	334	315				
PA0_314800	PD0_314804	2	14	518	5.5	3.7	2.8	94.8	95.5	26.2	12.7	12.1	5.8	0.833	1.167	138.6	191.5	1.6%	1.7%	1.564	1.618	499	337	318				
		2	13	483	7.7	5.5	3.1	88.4	89.0	24.4	12.7	12.1	5.8	0.833	1.167	133.9	184.3	1.7%	1.8%	1.560	1.613	499	338	320				
PA1_315036	PD1_315044	2	12	448	7.9	5.6	3.4	82.0	82.6	22.7	12.7	12.1	5.8	0.833	1.167	127.5	175.2	1.7%	1.8%	1.553	1.603	499	340	323				
		2	11	413	8.0	5.6	3.6	75.6	76.1	20.9	12.7	12.1	5.8	0.833	1.167	120.9	165.9	1.7%	1.8%	1.547	1.594	499	343	326				
PA0 266420	PD0 266424	2	10	377.9	5.8	4.1	3.8	69.2	69.6	19.1	12.7	12.1	5.8	0.833	1.167	112.4	154.7	1.6%	1.7%	1.537	1.581	499	346	331				
PA0_200430	PD0_200434	2	9	342.8	5.9	4.1	4.0	62.7	63.2	17.3	12.7	12.1	5.8	0.833	1.167	105.8	145.4	1.6%	1.7%	1.531	1.571	499	349	334				
DA1 266514	DD1 266516	2	8	307.9	5.6	3.9	4.2	56.3	56.7	15.6	12.7	12.1	5.8	0.833	1.167	98.9	135.8	1.6%	1.7%	1.524	1.562	499	352	337				
FA1_200514	FD1_200510	2	7	272.9	5.7	4.0	4.4	49.9	50.3	13.8	12.7	12.1	5.8	0.833	1.167	92.3	126.4	1.6%	1.7%	1.517	1.552	499	354	341				
		2	6	237.9	9.6	5.7	4.5	43.5	43.8	12.0	12.7	12.1	5.8	0.833	1.167	88.8	119.0	1.7%	1.8%	1.514	1.546	499	356	343				
PA2_266612	PD2_266614	2	5	196.8	9.8	5.8	4.6	36.0	36.3	10.0	12.7	12.1	5.8	0.833	1.167	81.1	108.0	1.7%	1.8%	1.506	1.535	499	359	- 91				
	1	-																						-61				

ELECTRONICS - ALTIROC

ASIC designed in 130 nm CMOS from TSMC

- Requirements to match the performance of LGADs:
 - Small jitter: 25 ps at 10 fC (< 70 ps at 4 fC)</p>
 - Radiation hard $(2.5 \times 10^{15} \text{ neg/cm}^2, 2.0 \text{ MGy})$
 - 2 fC minimum discriminator threshold
- Prototype status:
 - ALTIROC 0 and ALTIROC 1: Small prototype for analog FE tests (2020 JINST 15 P07007, 2023 JINST 18 P08019)
 - ALTIROC 2: First full size prototype (15 ×15 pixels, 2 ×2 cm 2) with full electronic chain (VPA and TZ amplifier types)
 - ALTIROC 3: Prototype up to specs presently under test (only TZ amplifiers implemented)

probes, temp sensor

Block diagram of the on-pixel electronics

ALTIROC test system with FPGA

ATLAS TDAQ

FELIX (Front-End Link eXchange)

- A system provides radiation-tolerant bidirectional communication for the front-end electronics and data acquisition (DAQ) of the ATLAS detector.
- It offers clock synchronization, control, configuration, calibration, and monitoring capabilities for the front-end chips.
- Additionally, FELIX collects and aggregates data from the front-end chips.
- Hardware design of FELIX developed by BNL (Brookhaven National Laboratory), while the FPGA firmware designed by Nikhef
- This system supports user development of custom functionalities.
 - FELIX Phase 1 / Run 3 hardware:
 - The FLX-712 card:
 - FPGA: Xilinx Kintex UltraScale KU115
 - 16-lane PCIe Gen3 for a bandwidth
 of up to 128 Gb/s
 - 4 or 8 MiniPODs to support 24 or 48 bidirectional optical links

- FELIX Phase 2 / Run 4 hardware:
 - The FLX-181/182 card:
 - FPGA: Xilinx Versal Prime VP1802
 - 16-lane PCIe Gen4 for a bandwidth of up to 256 Gb/s

• 4 FireFly optical links which can be used for a 100GbE port

23

- HGTD
 - 1728 IpGBTs to transmit hit time data from 8032 front-end modules to 48 FELIX systems.
 - Additionally, luminosity data will be transmitted to 32 FELIX systems.
 - The total data throughput from the front-end to FELIX reaches a remarkable 10 Tbps, with an average of approximately 62.72 Gbps per front-end circuit board.