

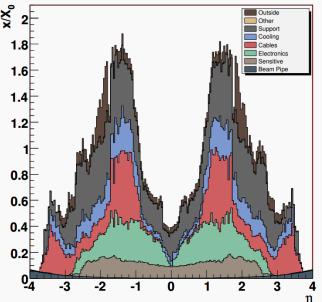
Development of a Wireless Data and Control Transmission Application for CEPC

Jun Hu, Xiaoshan Jiang,

Ziyue Yan, Xing Zhou

Outline

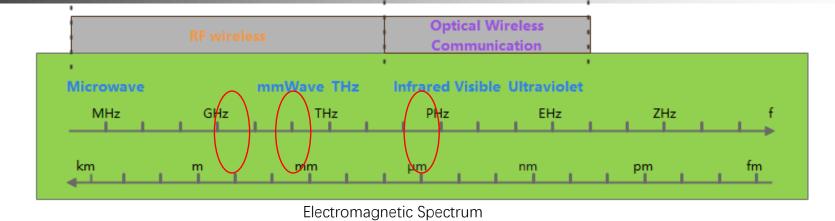
- Motivation
- Technology Feasibility Studies
 - WiFi
 - Millimeter Wave (60GHz)
 - Optical wireless communication (OWC)
- Plan
- Summary



Motivation

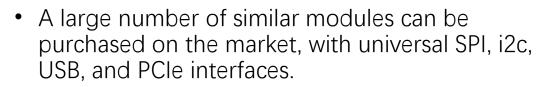
- Wireless transmission Advantages
 - Reducing the material budget of cables, fibers and connectors, while also reducing the dead zone.
 x² 2

-> Improve the detection efficiency and resolution!!!

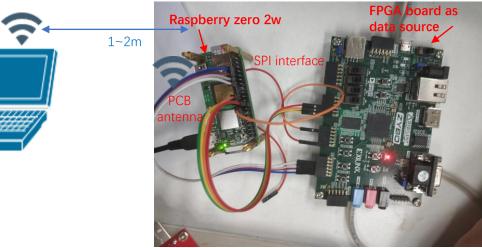

- Broadcast links simplify the clock and control signal topology in complex detector system.
- More convenient for installation and maintenance.

Radiation length distribution in CMS tracker

Technology Feasibility Studies



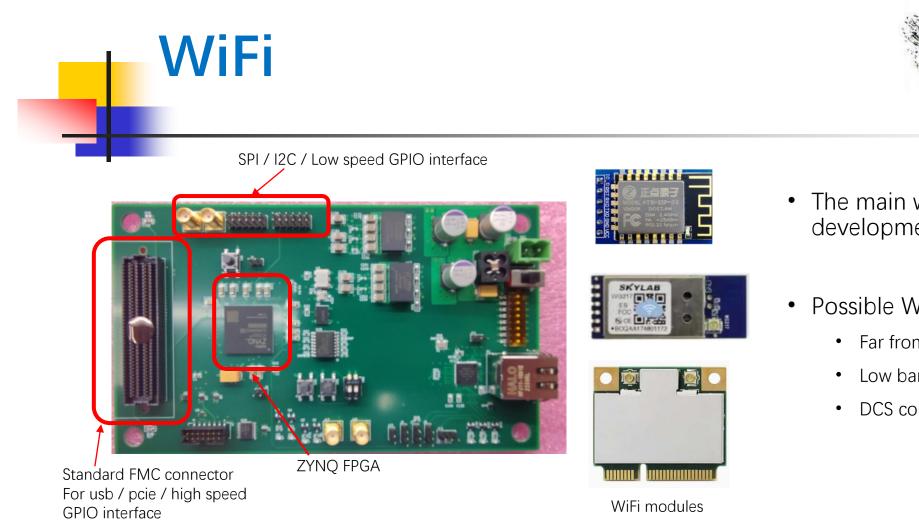
- WiFi (2.4GHz, 5GHz)
- Millimeter Wave (60GHz)
- Optical wireless communication (OWC) / Free Space Optical(FSO)


WiFi

Years	802.11 standard	Frequency Band	Name	Top Speeds
2009	802.11n	2.4 GHz or 5 GHz	WiFi 4	0.6Gbps
2013	802.11ac wave1	5 GHz	WiFi 5	6.93Gbps
2015	802.11ac wave2	5 GHz		
2019	802.11ax	2.4 GHz or 5 GHz	WiFi 6	9.6Gbps
		2.4 GHz or 5 GHz 6 GHz	WiFi 7	46Gbps

- Most of them can easily find software and drivers to make them work.
- Difficult and no need to design with WiFi client chips.

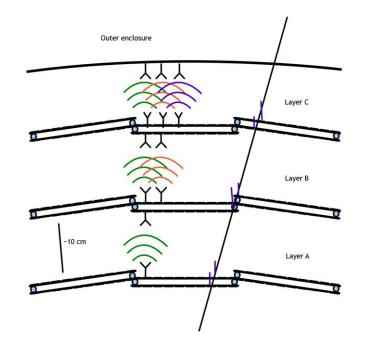
2023/10/24



Test setup based on Raspberry board

- Test with commercial board Raspberry PI zero 2w
 - Mature SOC system, support 2.4GHz 802.11b/g/n.

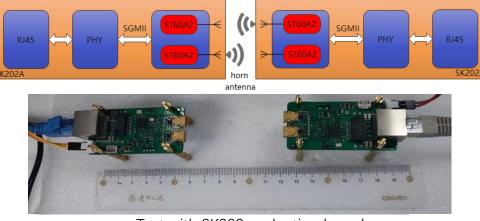
- Module size: 6.5cmX3cm, Power consumption: ~2W, Cost: ¥120.
- Communicate with FPGA board through 2 SPI buses, one receiving and one transmitting.
- Communicate with PC can achieve up to 22.03 Mbps in both uplink and downlink bandwidth through wireless.
- More test with multi-channel is needed


- The main work is embedded system development and driver porting.
- Possible WiFi application scenarios
 - Far from the front-end
 - Low bandwidth transmission
 - DCS control information

- A ZYNQ evaluation board was designed to verify different WiFi modules, avoiding duplicate driver software development work.
 - 2 kinds of low speed interface modules has been tested $\ensuremath{\text{2023/10/24}}\xspace$

Millimeter Wave

- Definition : 1-10mm wavelength (30-300GHz carrier frequency)
- Features
 - Huge bandwidth with lower power
 - Small antenna size
 - Large loss in free space, means lower interference,
 - High density possible
- A lot of ASICs for Radiation hard requirement are available with mature technology



Proposal of radial data readout for fast trigger by WADAPT Collaboration. *Multi Gigabit Wireless Data Transfer in Detectors at Future Colliders* https://www.frontiersin.org/articles/10.3389/fphy.2022.872691/full

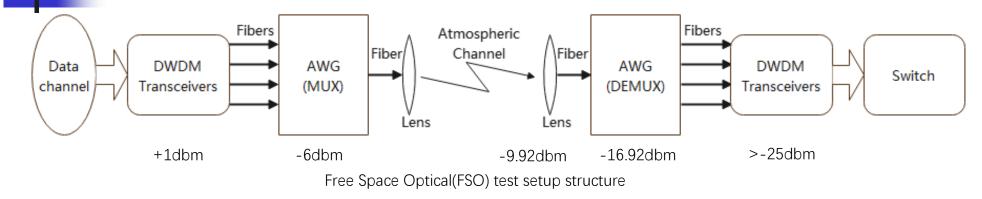
8

Millimeter Wave

Test with SK202 evaluation boards

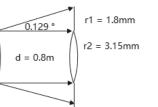
- Test with evaluation boards SK202
 - The commercial 60GHz RF chip ST60A2 transceiver from ST Microelectronics company.
 - Up to 6.25 Gbit/s data rate.
 - The chip power consumption: 44mW@TX, 27mW@RX, 3.5uW @ OFF
 - Cost: ¥100.

2023/10/24

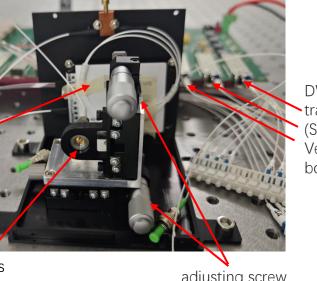

Distance (cm)	Bandwidth (Mbps)	Packet loss rate
1	914	0.031%
3	917	0.061%
5	915	0.05%
6	913	0.13%
>6	No link	No link

Test result at different distances of TX/RX

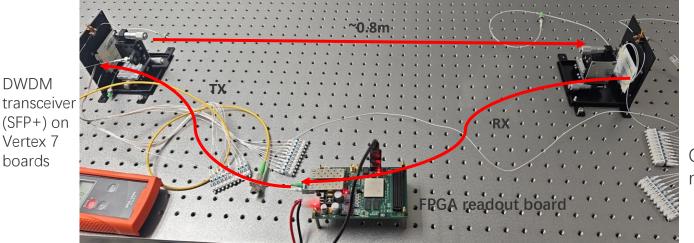
- 2 laptops use Iperf3 software to send data to each other, The test results shows
 - The transmission speed can reach more than 900Mbps when the distance is less than 5 cm.
 - No link when the distance is over 6 cm
 - When the horn antenna angle has 2 mm mismatch, the link is not stable.
- New custom evaluation board need to be designed with higher bandwidth.


Optical Wireless

- Data channel : Maybe from endcap of detector
- Dense Wavelength Division Multiplexing (DWDM) transceivers:
 - Up to 11.3Gb/s data links
 - Power Consumption: 1.6W
 - Average Optical Power: 1~5dBm
 - Optical Extinction Ratio: 8.2dB
 - Receiver Sensitivity (Average Power): -25dBm


- Arrayed Waveguide Grating (AWG)
 - Center Wavelength: 1550nm
 - Attenuation : -7db
 - Center Wavelength Spacing: 100GHz
 - Channels support: 20 bidirectional maximum
- Lens :
 - Divergence : 0.129°@1550nm

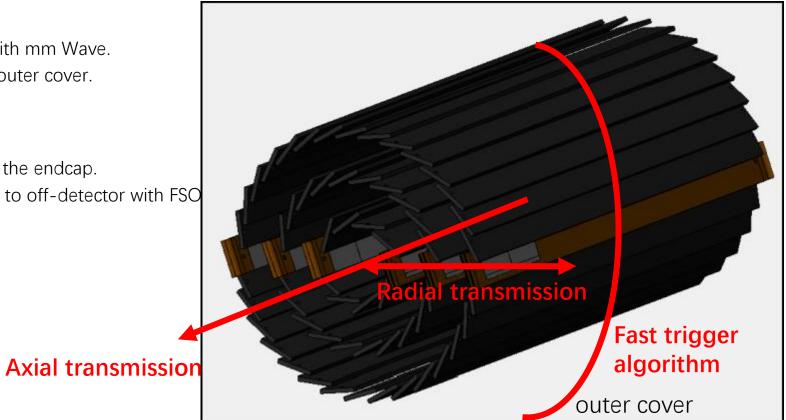
•
$$\eta = \frac{P_2}{P_1} = \left(\frac{r_2}{r_1 + r_2}\right)^2 = \left(\frac{3.15}{1.80 + 3.15}\right)^2 = 0.405 = -3.92 db$$



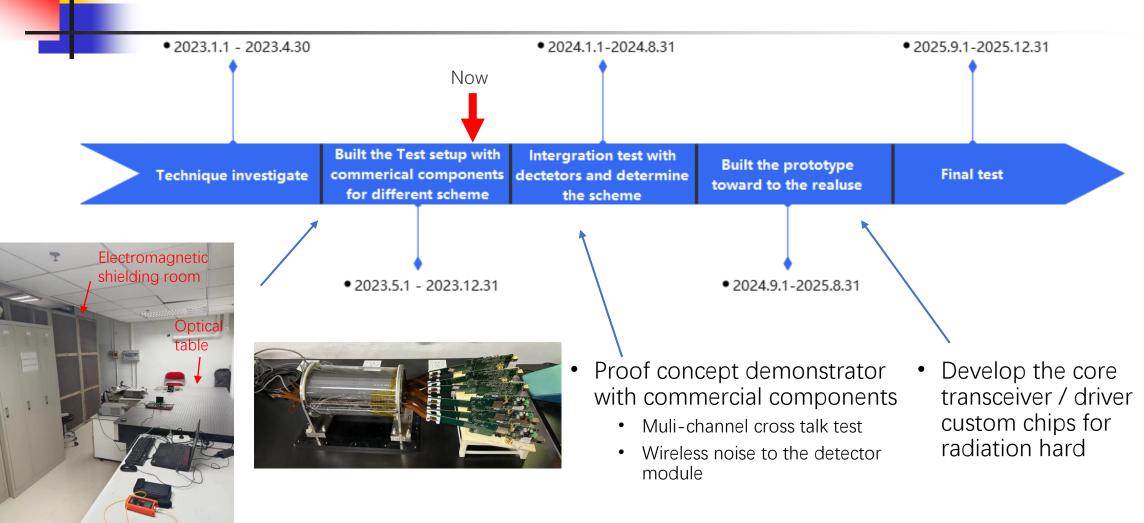
Optical Wireless

ibert eye pattern

Optical Power received : -13.36dBm


- Easily compatible with current readout electronics for MOST2 prototype (SFP+ connector)
- Kintex7 FPGA board use ibert test in loopback mode
 - Optical Power received : -13.36dBm > -25dBm
 - 32-PRBS error rate < 1.0X10^-12 @ 4Gbps
- Higher speed and more channels test need to be done with Vertex 7 board

2023/10/24



Preliminary idea

- Radial transmission
 - Short distance transmission with mm Wave.
 - Frist fast trigger generator in outer cover.
- Axial transmission
 - Data Aggregate few points at the endcap.
 - Longer distance transmission to off-detector with FSO

Plan

New laboratory

Summary

- Some specific wireless technologies are selected and the testing started.
- Need carefully proof concept demonstrator with thorough test.
- In-depth discussions about the structure and mechanical design of detector.
- Still open to exploring alternative technologies and other innovative ideas.

