

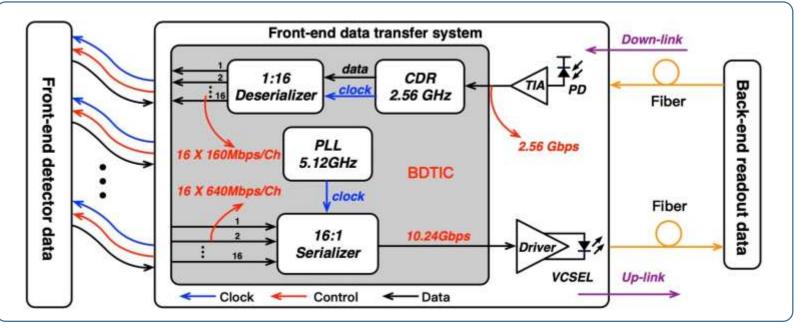
A 2.56 Gbps Clock and Data Recovery (CDR) ASIC

Design for High-Energy Physics Experiments

Di Guo 郭迪

On behalf of the ASIC design group in Central China Normal University 华中师范大学

The 2023 International Workshop on the High Energy Circular Electron Positron Collider Nanjing, Oct 23-27


CDR ASIC design

DTest Results

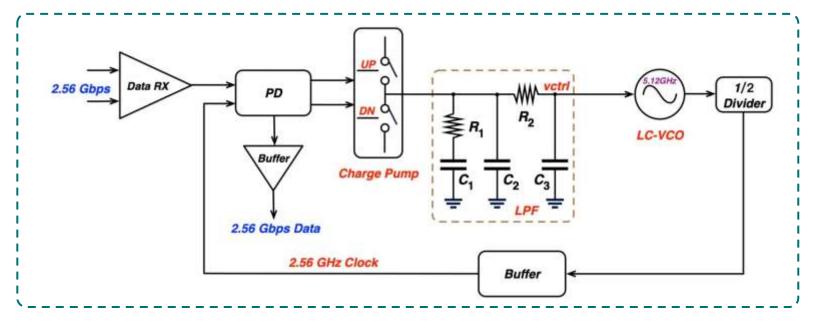
Bi-directional Data Transmission system in HEP

CENTRAL CHINA NORMAL UNIVERSITY

中師範大學

Simplified Bi-directional Data transmission system in HEP application

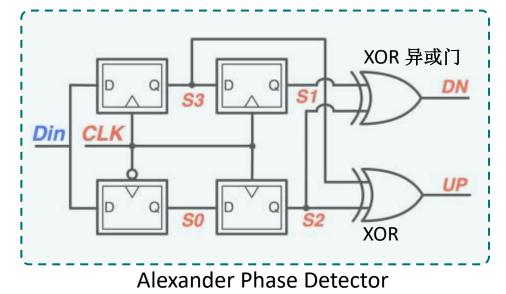
□ The proposed CDR design is one of the crucial sub-module of the


Bidirectinal Data InTerface Chip (BDTIC)

◆ work together with Xiaoting Li, Jingbo Ye's group in IHEP

□ CDR Data rate: 2.56 Gbps

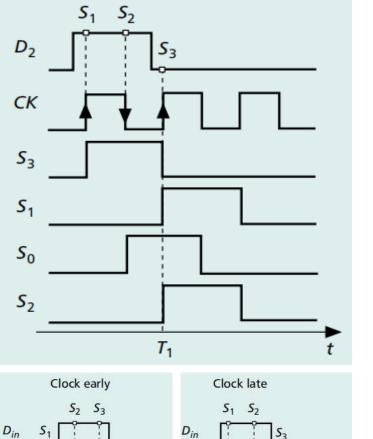
CDR Overall Structure



schematic block-diagram of the proposed CDR design

- □ PLL-based single-loop full-rate CDR.
- The proposed CDR is composed of high-speed Rx, Phase Detector (PD), Charge Pump (CP), Low-pass Filter (LPF) and the LC-based VCO.

Phase Detector (PD)



□ Full-rate Alexander PD structure

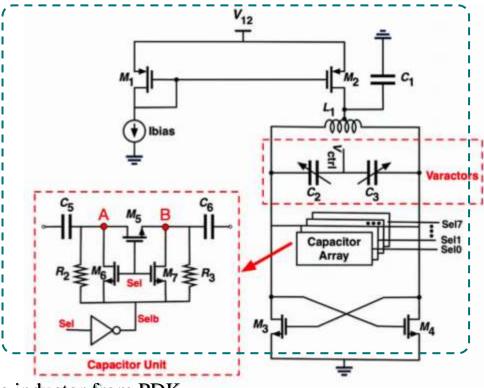
- □ Four DFFs and two XOR gates
- □ S1, S2, S3 : three data streams sampled by CK with different phases
- $\Box UP=S2\oplus S3, DN=S1\oplus S2$
- □ UP/DN: provides pulse with different widths proportional

to the phase difference between ck and data

CK

CK

Charge Pump

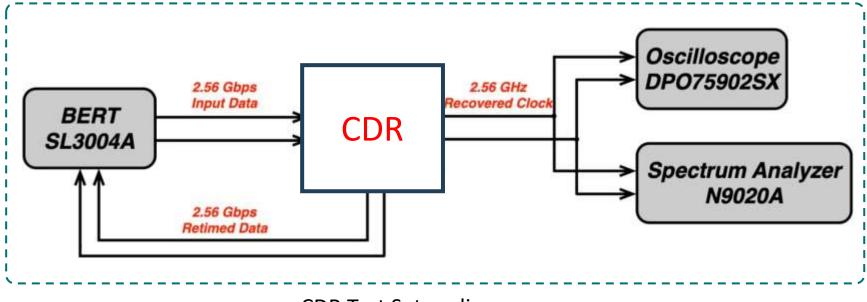

□ Use UP/DN signals as the current switch, charge and discharge the cap in LPF.

- Need accurate and precise current mirror design.
- □ Use two negative-feedback operational amplifier (OPA1, OPA2) to ensure X, Y,

Z at the same voltage during operation.

LC-based VCO

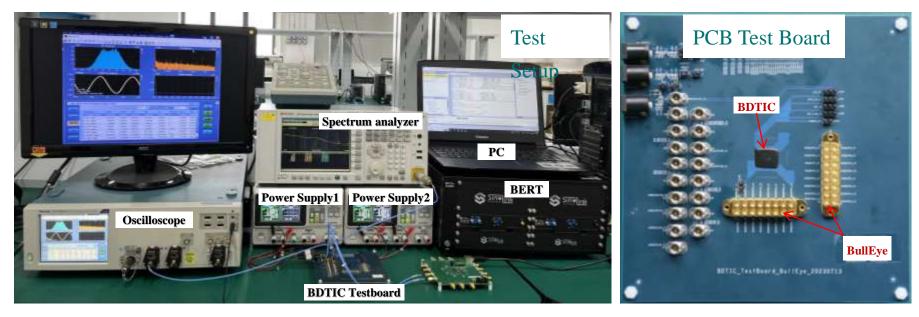
- □ L: passive inductor from PDK
- C: Varactors (C2 and C3) controlled by the Vctrl
 - + Capacitor Array (MOM cap array) configurable by SPI to adjust KVCO curve to ensure functionality in all PVT combinations
- In capacitor array unit, M5, M6, M7 related switch, reduce equivalent resistor of the cap to get higher Q factor.


CDR ASIC design

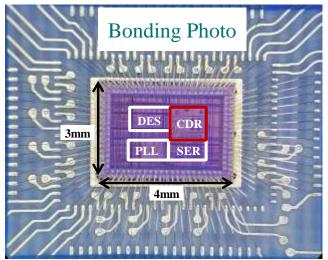
Test Results

-The 2023 International Workshop on the High Energy Circular Electron Positron Collider—

CDR Test Set-up Diagram



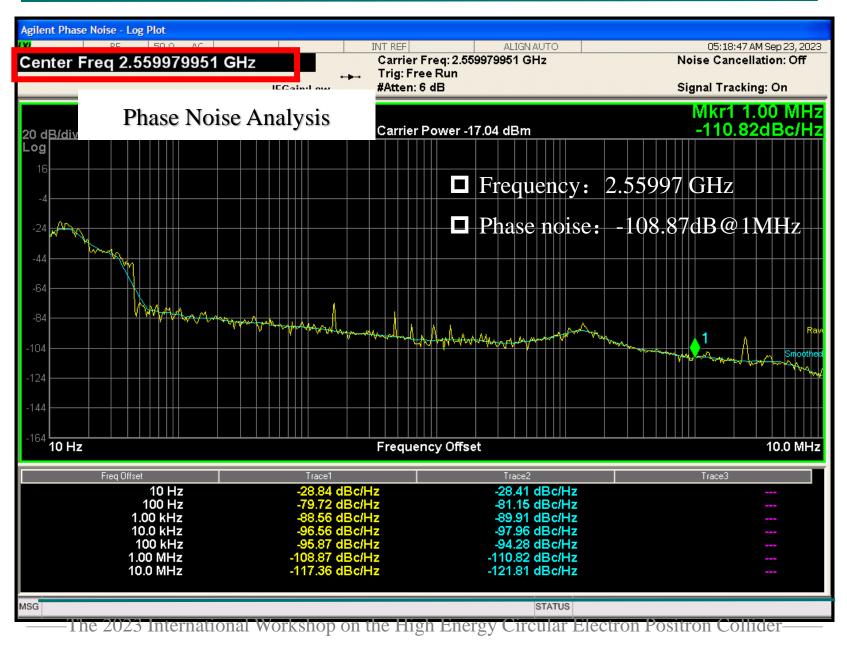
CDR Test Setup diagram


- BERT provides 2.56 Gbps PRBS7 data with a differential amplitude of 200mV.
- CDR outputs recovered clock, sent to the oscilloscope for jitter analysis, and sent to the spectrum analyzer for the phase noise analysis.
- CDR also outputs retimed data (resample the input data with recovered clock), sent to BERT for BER test.

CDR Test Pictures

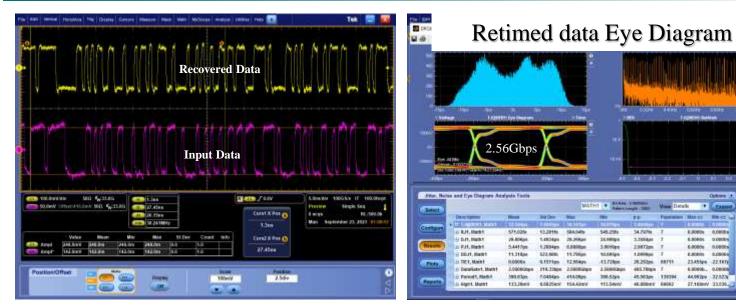
- □ Process: SMIC55nm CMOS RF
- **\Box** Chip Size: 3 mm × 4 mm
- □ CDR core size: 1000µm × 700µm
- CDR power consumption:200 mW including Rx and CML driver

CDR Test Results


<u>E</u> dit <u>V</u> ertical <u>Ho</u> riz/Acq <u>Trig</u>	Display <u>C</u> ursors Mea <u>s</u> ur	re Mas <u>k M</u> ath M	MyScope Analyze	Utilities Help		P075902SX Tek	
DPOJET Plots	er Angluci	e of th	e reco	vered a	112	_	
	of Analysi		@BER1: Eve Diagra		/IK	_	X:Time
1. Voltage		1	шоскі: суе Diagra				A. TIMe
80mV			<u>.</u>				
60mV			<u>\</u>				.
10-11							
40mV	//		<u>\</u>				
20mV	· · · · · · · · · · · · · · · · · · ·				····· //		
ov <mark>- · · · · · · · · · · · · · · · · · · </mark>	····· //		····· <u>\</u>				
-20mV				F re	equency:	2.56 GF	Iz 📏
	<u>//</u>						
-40mV	//			🔪 🗖 RN	/ Jitter:	857.45f	S
-60mV -					//		
-80mV Offset: 0.0030977 Uls:4000:12799, Total:5669	960 1228704						
-400ps -300p		i -100ps	i Os	i 100ps	i 200ps	 300ps	. i i 400ps

Select				MATH	11 🔻	5.1200Gb/s ength : 2UI	View Deta	ils 🔻	Expand	Recalc
	Description	Mean	Std Dev	Мах	Min	р-р	Population	Max-cc	Min-cc 🛆	0
Configure	▶ 🖶 T.I@RFR1. Math1	21.694ns	594.01fs	23.355ps	20.515ps	2.8399ps	95	0.0000s	0.0000s	
Configure	🛨 RJ1, Math1	857.45fs	1).219fs	905.21fs	820.49fs	84.719fs	95	0.0000s	0.0000s	Single
	🛨 DJ1, Math1	11.592ps	579.96fs	13.500ps	10.605ps	2.8948ps	95	0.0000s	0.0000s	
Results	🛨 PJ1, Math1	11.345ps	581.50fs	13.251ps	10.365ps	2.8857ps	95	0.0000s	0.0000s =	Stop
	🛨 DDJ1, Math1	0.0000s	0.0000s	0.0000s	0.0000s	0.0000s	95	0.0000s	0.0000s	
Plots	🛨 TIE1, Math1	0.0000s	2.3212ps	10.965ps	-8.0932ps	19.058ps	1.2159M	7.0126ps	-8.1765p	Show Plots
	Deriod1 Math1	300.63ns	1 4943ps	397.64ps	382.45ps	15.189ps	1.2158M	11.191ps	-11.078p	ıllı
	🛨 Freq1, Math1	2.5600GHz	9 7997MHz	2.6147GHz	2.5148GHz	99.876MHz	1.2158M	72.504M	-74.333	
Reports	+ High1, Math1	73.183mV	1.9656mV	81.100mV	63.460mV	17.640mV	1.2159M	9.6600mV	-10.500.	Bathtub

-The 2023 International Workshop on the High Energy Circular Electron Positron Collider—



CDR Test Results

CDR Test Results

8	er • wr	BE	R′	Test Resu	ılt		2 - 2
	40.00 s 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000 40.00000000						
	No Contraction International International International	-		2.56 Gbj	ps BE	R Passed	
-	10 10 1 10 100 10 10 10 10 10 10 10 10 10	-				Traini Traini Traini Traini Traini	

Retimed 2.56 Gbps data output

12

Bill CT

0.0808+

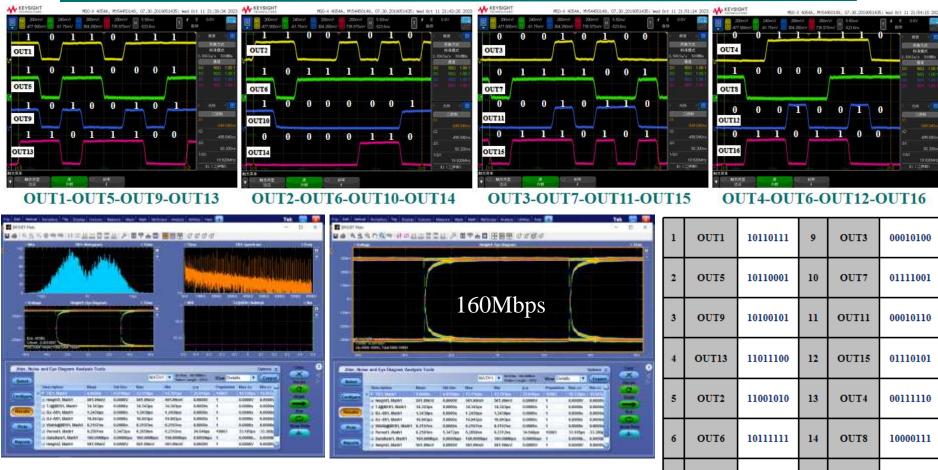
0.00054

0.0000

0.08004

from the CDR

- □ Data rate: 2.56 Gbps
- \square RMS Jitter: 571.02 fs
- □ Total Jitter: 32.54 ps
- **BER runing time:** 20 minutes


not a single error

CENTRAL CHINA NORMAL UNIVERSIT

CDR + Deserializer Test Results

1: 16 Deserializer uses the 2.56 GHz recovered clock and retimed data from CDR

□ The logic function of the deserializer is proved in the test.

OUT10

OUT14

8

10000001

00000110

15

16

OUT12

OUT16

00010010

THANKS!