Research Progress on Multichannel, High Precision TDC Based on VDL Technology

Zhao Ziwei, Zheng Ran*, Hu Yann

Email: zhengran@nwpu.edu.cn

///Introduction

Principles and Classification of TDC

Applications in Radiation Detection

• High energy physical experiment (e. g. STCF)

• Positron emission tomography (PET)

• Fluorescence lifetime imaging microscopy (FLIM)

Architectural Considerations

Design requirements (for the EMC in STCF)					
Process	CMOS 180 nm				
Number of channels	≥ 6				
Resolution	< 100 ps				
Dynamic range	> 1 µs				
Linearity	DNL < 1 LSB, INL < 1.5 LSB				
Sample rate	>4 MHz				

An 8-channel 3-step VDL based TDC ASIC designed in 2022

The Structure and Working Principle

The Design of DLL and PLL

The Design of 3-Step TDC

• The 1st step: Double Triggered Counter.

• The 2nd step: Multi-phase Clock Interpolator & Synchronizer

The Design of 3-Step TDC

• The 3rd Step: Vernier Delay Loop

- ✓ Reduced mismatch improved linearity
- ✓ Automatic reset in single channel.
- \checkmark Recovery time: 3.7 ns
- \checkmark Dead time (max): 51.4 ns.
- ✓ Counting rate (min):
 ~19.5 MHz.

10

Testing Results

• Testing System

• Linearity (@Fref=100MHz, with code density test)

	DNL (max)	INL (max)	
Channel 1-2	0.30 LSB	-0.91 LSB	
Channel 1-3	0.32 LSB	-1.00 LSB	
Channel 1-4	0.37 LSB	-1.26 LSB	
Channel 1-5	0.34 LSB	-1.10 LSB	
Channel 1-6	0.35 LSB	-1.16 LSB	
Channel 1-7	0.30 LSB	-0.87 LSB	
Channel 1-8	0.29 LSB	-0.70 LSB	

• Single Shoot Precision (@Fref=100MHz)

The SSP results can be calibrated with the tested INL.

 $T_{CAL}(i) = T_{TEST}(i) - INL(i)$

	Uncalibrated	Calibrated	
Channel 1-2	93.5 ps	62.5 ps	
Channel 1-3	91.7 ps	56.2 ps	
Channel 1-4	98.6 ps	66.3 ps	
Channel 1-5	116.1 ps	72.1 ps	
Channel 1-6	96.3 ps	61.1 ps	
Channel 1-7	90.4 ps	62.5 ps	
Channel 1-8	104 ps	67.1 ps	

• **Power Consumption** (@Fref=100MHz)

Counting Rate	Total Power Consumption		
0	18 mW		
1 KHz	88.2 mW		
4 MHz	93.6 mW		

11

Performance Comparison

Year, ref	Process size (nm)	Number of channels/pixels	Туре	Dynamic Range (ns)	LSB (ps)	SSP (ps)	DNL/INL (LSB)
2012, [1]	130	16	GRO	3700	56.5	325 (system)	-
2012, [2]	130	1024	Delay line	100	119	78.5	0.4/1.2
2014, [3]	350	48	GRO	51.8	3390	93.2	1.97/2.39
2019, [4]	150	128	GRO	81.8	80	196 (system)	0.2/2.4
2020, [5]	350	1	VDL	10	78	97.6	0.04/0.58
This work	180	8	VDL	2560	41.7	56.2	0.37/1.26

Reference:

[1] D. Tyndall et al. "A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS," IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 6, pp. 562–570, Dec. 2012.

[2] M. Gersbach et al., "A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology," IEEE J. SolidState Circuits, vol. 47, no. 6, pp. 1394–1407, Jun. 2012..

[3] S. Mandai et al. "A $780 \times 800 \mu m2$ multichannel digital silicon photomultiplier with column-parallel time-to-digital converter and basic characterization," IEEE Trans. Nucl. Sci., vol. 61, no. 1, pp. 44–52, Feb. 2014.

[4] E. Manuzzato et al., "A16×8 digital-SiPM array with distributed trigger generator for low SNR particle tracking," IEEE Solid-State Circuits Lett., vol. 2, no. 9, pp. 75–78, Sep. 2019.

[5] E. Conca et al., "Large-area, fast-gated digital SiPM with integrated TDC for portable and wearable time-domain NIRS," IEEE J. Solid-State Circuits, vol. 55, no. 11, pp. 3097–3111, Nov. 2020.

Prospects and Thoughts

• How to improve resolution ?

- Higher clock frequency: less accumulated jitter but more power consumption.
- More delay units in DLL: more accumulated jitter and more power consumption.
- ✓ Auxiliary circuits like time-amplifier: more complicated and worse linearity

• How to improve SSP ?

- ✓ Frequency synthesizer with low noise: LC-VCO based PLL, fully differential delay unit.
- Attenuated noise from power supply: noise filtering, LDO integrated on chip.
- ✓ Multi-channel averaging for a single event: SSP downsized to $1/\sqrt{n}$.

• How to balance the performance of multi-channels ?

- ✓ More symmetrical channels: axial symmetry, central symmetry.
- ✓ In-situ calibration: like that in HPTDC^[1].
- ✓ Calibration techniques: digital scrambling technique^[2], histogram-based approach ^[3], genetic algorithm^[4], delay offset calibration^[5].

Reference:

[1] Christiansen J. HPTDC High Performance Time to Digital Converter. 2004.
[2] M. Zanuso, et al. Time-to-digital converter with 3-ps resolution and digital linearization algorithm, Proc. ESSCIRC (2010) 262–265.

[3] J. Wu, Several key issues on implementing delay line based TDCs using FPGAs, IEEE Trans. Nucl. Sci. 57 (3) (2010) 1543–1548.

[4] H. Chung, et al. A 360-fs-time-resolution 7-bit stochastic time-to-digital converter with linearity calibration using dual time offset arbiters in 65nm CMOS, IEEE J. Solid-State Circuits 56 (3) 940–949.

[5] H. Chung, et al. A 10-Bit 80-MS/s decision-select successive approximation TDC in 65-nm CMOS, IEEE J. Solid-State Circuits 47 (5) (2012) 1232–1241.

A 6-channel TA-based TDC ASIC designed in 2023

The Design of TA-based TDC

15

The Layout and Simulation Results

• Simulation of TA's input-output curve.

Thanks for Your Attention