

Probing Neutral Triple Gauge Couplings at the LHC, CEPC and SPPC

Rui-Qing Xiao

*in Collaborations with John Ellis and Hong-Jian He

EDITORS' SUGGESTION

Probing neutral triple gauge couplings at the LHC and future hadron colliders

Many searches for new physics can be parameterized by higher-dimension operators in effective field heories. In this work, the authors show a consistent translation of dimension-8 operators into triple gauge boson form factors and analyze the expected experimental reach. Incorporating the full Standard Model symmetry requires an additional term which has been neglected in earlier work, leading to significantly different results.

John Ellis, Hong-Jian He, and Rui-Qing Xiao Phys. Rev. D 107, 035005 (2023)

Phys.Rev.D 107 (2023) 3, 035005

SCIENCE CHINA Physics, Mechanics & Astronomy and the second

Sci.China Phys.Mech.Astron. 64 (2021) 2, 221062

ISSN 1674-113

Chinese Physics C High Energy and Nuclear Physics

A Series Journal of the Chinese Physical Society Distributed by IOP Publishi logistience.org/ope | opc.lhep.ac.on

Volume 44 June 2020 Number 6

Cover Story Proting the Scale of New Physics in the ZZ², Coupling at e⁺e Collider-John Ellis, Shao-Forg Da, Hang Jian He, Rui Ong Alao OK 10 1084/1074-1137/44/sh00106

Cirecte Pressea Sector III COP Publishing

Chin.Phys.C 44 (2020) 6, 063106

Standard Model Effective Field Theory

SMEFT is a model independent way to look for BSM physics

- Higher-dimensional operators as relics of higher energy physics, e.g., dimension-6: $\mathcal{L}_{eff} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i = \sum_{i} \frac{\text{sign}(c_j)}{\Lambda_i^2} \mathcal{O}_i$
- Operators constrained by $SU(2) \times U(1)$ symmetry, assuming usual quantum numbers for SM particles
- Constrain operator coefficients with global analysis of experimental data;
- Non-zero *c_i* would indicate BSM: Masses, spins, quantum numbers of new particles?
- Dimension-8 contributions scaled by quartic power of new physics scale: $\Delta \mathcal{L}_{dim-8} = \sum_{i} \frac{\tilde{c}_{i}}{\tilde{\Lambda}^{4}} \mathcal{O}_{i} = \sum_{i} \frac{\operatorname{sign}(\tilde{c}_{i})}{\Lambda_{i}^{4}} \mathcal{O}_{i}$
- Study processes without dimension-6 contributions,
 - e.g., $\gamma\gamma \rightarrow \gamma\gamma$, $gg \rightarrow \gamma\gamma$...
- Neutral triple-gauge couplings (nTGCs): $Z\gamma Z^*$, $Z\gamma\gamma^*$

Previous nTGC studies[†]

Assuming only Lorentz and $U(1)_{em}$ gauge invariance

$$\begin{split} \Gamma^{\alpha\beta\mu}_{ZZV}(q_1,q_2,q_3) &= \quad \frac{(q_3^2-m_V^2)}{m_Z^2} \left[f_4^V(q_3^{\alpha}g^{\mu\beta}+q_3^{\beta}g^{\mu\alpha}) - f_5^V \epsilon^{\mu\alpha\beta\rho}(q_1-q_2)_{\rho} \right] \,, \\ \Gamma^{\alpha\beta\mu}_{Z\gamma V}(q_1,q_2,q_3) &= \quad \frac{(q_3^2-m_V^2)}{m_Z^2} \left\{ h_1^V(q_2^\mu g^{\alpha\beta}-q_2^\alpha g^{\mu\beta}) + \frac{h_2^V}{m_Z^2} q_3^\alpha [(q_2q_3)g^{\mu\beta}-q_2^\mu q_3^\beta] \right. \\ &\quad - \quad h_3^V \epsilon^{\mu\alpha\beta\rho}q_{2\rho} \,- \, \frac{h_4^V}{m_Z^2} q_3^\alpha \epsilon^{\mu\beta\rho\sigma} P_{\rho}q_{2\sigma} \right\} \,. \end{split}$$

 $f_{4,5}^V$ and $h_{1,2,3,4}^V$ are function of $q_i^2,$ but treated as constant in experimental analysis

$$\begin{split} \mathcal{L}_{NP} &= \frac{e}{m_Z^2} \left[- [f_4^{\gamma} (\partial_{\mu} F^{\mu\beta}) + f_4^Z (\partial_{\mu} Z^{\mu\beta})] Z_{\alpha} (\partial^{\alpha} Z_{\beta}) + [f_5^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) + f_5^Z (\partial^{\sigma} Z_{\sigma\mu})] \overline{Z}^{\mu\beta} Z_{\beta} \right. \\ & - \left. [h_1^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) + h_1^Z (\partial^{\sigma} Z_{\sigma\mu})] Z_{\beta} F^{\mu\beta} - [h_3^{\gamma} (\partial_{\sigma} F^{\sigma\rho}) + h_3^Z (\partial_{\sigma} Z^{\sigma\rho})] Z^{\alpha} \overline{F}_{\rho\alpha} \right. \\ & - \left. \left. \left\{ \frac{h_2^{\gamma}}{m_Z^2} [\partial_{\alpha} \partial_{\beta} \partial^{\rho} F_{\rho\mu}] + \frac{h_Z^2}{m_Z^2} [\partial_{\alpha} \partial_{\beta} (\Box + m_Z^2) Z_{\mu}] \right\} Z^{\alpha} F^{\mu\beta} \right. \\ & + \left. \left\{ \frac{h_4^{\gamma}}{2m_Z^2} [\Box \partial^{\sigma} F^{\rho\alpha}] + \frac{h_4^Z}{2m_Z^2} [(\Box + m_Z^2) \partial^{\sigma} Z^{\rho\alpha}] \right\} Z_{\sigma} \overline{F}_{\rho\alpha} \right], \end{split}$$

The conventional nTGC form factor formalism was adopt by previous LHC experimental analysis, but it disregards SU(2)×U(1) of SM!

[†]G. J. Gounaris, J. Layssac, and F. M. Renard, Phys. Rev. D 61 (2000) 073013

We propose the pure gauge operators of dimension-8 ($\mathcal{O}_{G+},\mathcal{O}_{G-})$ that contribute to nTGCs and are independent of the dimension-8 operator involving the Higgs doublet.

$$\begin{split} g\mathcal{O}_{G+} &= \widetilde{B}_{\mu\nu} W^{a\mu\rho} (D_{\rho} D_{\lambda} W^{a\nu\lambda} + D^{\nu} D^{\lambda} W^{a}_{\lambda\rho}), \\ g\mathcal{O}_{G-} &= \widetilde{B}_{\mu\nu} W^{a\mu\rho} (D_{\rho} D_{\lambda} W^{a\nu\lambda} - D^{\nu} D^{\lambda} W^{a}_{\lambda\rho}), \\ \mathcal{O}_{\widetilde{B}W} &= \mathrm{i} H^{+} \widetilde{B}_{\mu\nu} W^{\mu\rho} \{D_{\rho}, D^{\nu}\} H + \mathrm{h.c.}, \\ \mathcal{O}_{C+} &= \widetilde{B}_{\mu\nu} W^{a\mu\rho} \Big[D_{\rho} (\overline{\psi_{L}} T^{a} \gamma^{\nu} \psi_{L}) + D^{\nu} (\overline{\psi_{L}} T^{a} \gamma_{\rho} \psi_{L}) \Big], \\ \mathcal{O}_{C-} &= \widetilde{B}_{\mu\nu} W^{a\mu\rho} \Big[D_{\rho} (\overline{\psi_{L}} T^{a} \gamma^{\nu} \psi_{L}) - D^{\nu} (\overline{\psi_{L}} T^{a} \gamma_{\rho} \psi_{L}) \Big]. \end{split}$$

 $\begin{array}{l} \mathcal{O}_{C+} \text{ and } \mathcal{O}_{C-} \text{ are connected to } (\mathcal{O}_{G+}, \mathcal{O}_{G-}, \mathcal{O}_{\widetilde{B}W}) \text{ by the equation of} \\ \text{motion: } D^{\nu} W^a_{\mu\nu} = \mathrm{i}g \Big[H^{\dagger} T^a D_{\mu} H - (D_{\mu} H)^{\dagger} T^a H \Big] + g \, \overline{\psi_L} T^a \gamma_{\mu} \psi_L \end{array}$

$$\begin{split} \mathcal{O}_{C+} &= \mathcal{O}_{G-} - \mathcal{O}_{\widetilde{B}W}, \\ \mathcal{O}_{C-} &= \mathcal{O}_{G+} - \left\{ i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \left[D_{\rho}, D^{\nu} \right] H + i 2 (D_{\rho} H)^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} D^{\nu} H + \text{h.c.} \right\}. \end{split}$$

Left side and right side have the same contribution to $\psi\bar\psi\to Z\gamma$ 3 independent nTGC operators Only ψ_L in $\mathcal{O}_{C^-}\to \mathcal{O}_{G^+}$ can not contribute to $\psi_R\bar\psi_R\to Z\gamma$

Neutral Triple Gauge Vertices

Dimension-8 SMEFT:

$$\begin{split} \Gamma^{\alpha\beta\mu}_{Z\gamma Z^{*}(G+)}(q_{1},q_{2},q_{3}) &= -\frac{v(q_{3}^{2}-M_{Z}^{2})}{M_{Z}\left[\Lambda_{G+1}^{4}\right]}\left(q_{3}^{2}q_{2\nu}\epsilon^{\alpha\beta\mu\nu}+2q_{2}^{\alpha}q_{3\nu}q_{2\sigma}\epsilon^{\beta\mu\nu\sigma}\right),\\ \Gamma^{\alpha\beta\mu}_{Z\gamma\gamma^{*}(G+)}(q_{1},q_{2},q_{3}) &= -\frac{s_{W}vq_{3}^{2}}{c_{W}M_{Z}\left[\Lambda_{G+1}^{4}\right]}\left(q_{3}^{2}q_{2\nu}\epsilon^{\alpha\beta\mu\nu}+2q_{2}^{\alpha}q_{3\nu}q_{2\sigma}\epsilon^{\beta\mu\nu\sigma}\right),\\ \Gamma^{\alpha\beta\mu}_{Z\gamma\gamma^{*}(\overline{B}W)}(q_{1},q_{2},q_{3}) &= \frac{vM_{Z}\left(q_{3}^{2}-M_{Z}^{2}\right)}{\left[\Lambda_{\overline{B}W}^{4}\right]}\epsilon^{\alpha\beta\mu\nu}q_{2\nu},\\ \Gamma^{\alpha\beta\mu}_{Z\gamma\gamma^{*}(G-)}(q_{1},q_{2},q_{3}) &= -\frac{s_{W}vM_{Z}\left(q_{3}^{2}-M_{Z}^{2}\right)}{c_{W}\left[\Lambda_{G-1}^{4}\right]}\epsilon^{\alpha\beta\mu\nu}q_{2\nu}q_{3}^{2}.\end{split}$$

Conventional form factor parameterization:

Full SU(2)×U(1) gauge constraints:

$$\Gamma^{\alpha\beta\mu(8)}_{Z\gamma V^*}(q_1,q_2,q_3) \;=\; \frac{e\,(q_3^2-M_V^2)}{M_Z^2} \left[\left(h_3^V + h_5^V \frac{q_3^2}{M_Z^2} \right) q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_4^V}{M_Z^2} \, q_2^\alpha \, q_{3\nu} \, q_{2\sigma} \, \epsilon^{\beta\mu\nu\sigma} \right],$$

 $\mathcal{O}(E^5)$ terms must cancel each other in amplitude with longitudinal Z:

$$\mathcal{T}[f\bar{f} \to Z_L \gamma] = h_3^V O(E^3) + h_4^V O(E^5) + \frac{h_5^V O(E^5)}{5} = \Lambda_j^{-4} O(E^3) \,.$$

Matching Form Factors to Dimension-8 Operators

 $\mathcal{T}[f\bar{f} \rightarrow Z_L\gamma]$ as contributed by the gauge-invariant dimension-8 nTGC operators must obey the equivalence theorem (ET):

$$\mathcal{T}_{(8)}[Z_L, \gamma_T] = \mathcal{T}_{(8)}[-i\pi^0, \gamma_T] + B,$$

The residual term $B = \mathcal{T}_{(8)}[v^{\mu}Z_{\mu},\gamma_T]$ is suppressed by the relation $v^{\mu} \equiv e_L^{\mu} - q_L^{\mu}/M_Z = \mathcal{O}(M_Z/E_Z).$ Only $\mathcal{O}_{\widetilde{B}W}$ could give a nonzero contribution to $\mathcal{T}_{(8)}[-i\pi^0,\gamma_T] = \mathcal{O}(E^3)$ \mathcal{O}_{G_+} does not contribute to $\mathcal{T}_{(8)}[-i\pi^0,\gamma_T]$, but can contribute $B = \mathcal{O}(E^3).$

 h_4^Z/h_4^γ must be fixed to cancel their contributions to $\mathcal{T}[f\bar{f} \rightarrow Z^* \rightarrow Z\gamma] + \mathcal{T}[f\bar{f} \rightarrow \gamma^* \rightarrow Z\gamma]$ via right-handed fermions.

Relations between form factor coefficients $h_4^V=2h_5^V$, $h_4^Z=\frac{c_W}{s_W}h_4^\gamma$ and :

$$\begin{split} h_4 &= -\frac{\mathrm{sign}(\tilde{c}_{G+})}{\Lambda_{G+}^4} \, \frac{v^2 M_Z^2}{s_W c_W} \equiv \frac{r_4}{[\Lambda_{G+}^4]} \,, \qquad h_3^V = 0 \,, \qquad \text{for } \mathcal{O}_{G+} \,, \\ h_3^Z &= \frac{\mathrm{sign}(\tilde{c}_{\widetilde{B}W})}{\Lambda_{\widetilde{B}W}^4} \, \frac{v^2 M_Z^2}{2s_W c_W} \equiv \frac{r_3^Z}{[\Lambda_{\widetilde{B}W}^4]} \,, \qquad h_3^\gamma, h_4^V = 0 \,, \qquad \text{for } \mathcal{O}_{\widetilde{B}W} \,, \\ h_3^\gamma &= -\frac{\mathrm{sign}(\tilde{c}_{G-})}{\Lambda_{G-}^4} \, \frac{v^2 M_Z^2}{2c_W^2} \equiv \frac{r_3^\gamma}{[\Lambda_{G-}^4]} \,. \qquad h_3^Z, h_4^V = 0 \,, \qquad \text{for } \mathcal{O}_{G-} \,, \end{split}$$

Feynman Diagrams

$$e^-e^+ \rightarrow q\bar{q}\gamma$$

- (a) nTGC s channel $Z\gamma$
- (b) SM t and u channel $Z\gamma$
- (c) Reducible SM backgrounds
- (d) $\mathcal{O}_{C+}, \mathcal{O}_{C-}$ contribution

Diagrams of $q \bar{q}
ightarrow l^- l^+ \gamma$ have the same structure

Cross section of $f\bar{f} \rightarrow Z\gamma$

 $\sigma = \sigma_0(\mathsf{SM}^2) + \sigma_1(\mathsf{SM}\times\mathsf{nTGC}) + \sigma_2(\mathsf{nTGC}^2)$

$$\begin{split} \sigma_{0} &= \frac{e^{4}(c_{L}^{2}+c_{R}^{2})\,Q^{2}\Big[-(s-M_{Z}^{2})^{2}-2(s^{2}+M_{Z}^{4})\ln\sin\frac{\delta}{2}\Big]}{8\pi s_{W}^{2}(s-M_{Z}^{2})s^{2}} = \mathcal{O}(s^{-1}), \\ \sigma_{1} &= \frac{e^{2}c_{L}Q\,T_{3}M_{Z}^{2}\Big(s-M_{Z}^{2}\Big)}{4\pi s_{W}c_{W}s}\frac{1}{[\Lambda_{4+}^{4}]} - \frac{e^{2}Q(c_{L}x_{L}-c_{R}x_{R})M_{Z}^{2}\Big(s-M_{Z}^{2}\Big)\Big(s+M_{Z}^{2}\Big)}{8\pi s_{W}c_{W}s^{2}}\frac{1}{[\Lambda_{f}^{4}]}, \\ &= \frac{e^{2}c_{L}Q\,T_{3}M_{Z}^{2}\Big(s-M_{Z}^{2}\Big)}{4\pi s_{W}c_{W}s}\frac{h_{4}}{r^{4}} - \frac{e^{2}Q(c_{L}x_{L}-c_{R}x_{R})M_{Z}^{2}\Big(s-M_{Z}^{2}\Big)\Big(s+M_{Z}^{2}\Big)}{8\pi s_{W}c_{W}s^{2}}\frac{h_{Y}^{V}}{r_{Y}^{V}} \\ &= h_{4}\mathcal{O}(s^{0}) + h_{Y}^{V}\mathcal{O}(s^{0}), \\ \sigma_{2} &= \frac{T_{3}^{2}(s+M_{Z}^{2})\Big(s-M_{Z}^{2}\Big)^{3}}{48\pi s}\frac{1}{\Lambda_{6+}^{8}} + \frac{(x_{L}^{2}+x_{R}^{2})M_{Z}^{2}\Big(s+M_{Z}^{2}\Big)\Big(s-M_{Z}^{2}\Big)^{3}}{48\pi s^{2}}\frac{1}{\Lambda_{f}^{8}} + cross terms \\ &= \frac{T_{3}^{2}(s+M_{Z}^{2})\Big(s-M_{Z}^{2}\Big)^{3}}{48\pi s}\left(\frac{h_{4}}{r_{4}}\right)^{2} + \frac{(x_{L}^{2}+x_{R}^{2})M_{Z}^{2}\Big(s+M_{Z}^{2}\Big)\Big(s-M_{Z}^{2}\Big)^{3}}{48\pi s^{2}}\left(\frac{h_{3}^{V}}{r_{y}^{V}}\right)^{2} + cross terms \\ &= (h_{4})^{2}\mathcal{O}(s^{3}) + (h_{3}^{V})^{2}\mathcal{O}(s^{2}) + cross terms, \\ (x_{L}, x_{R}) = -Qs_{W}^{2}(1, 1), \end{split}$$

$$\begin{split} (x_L, x_R) &= \Big(T_3 - \mathcal{Q}s_W^2, - \mathcal{Q}s_W^2\Big), \qquad \qquad (\text{for } \mathcal{O}_j = \mathcal{O}_{\widetilde{B}W}), \\ (x_L, x_R) &= -(T_3, 0), \qquad \qquad \qquad (\text{for } \mathcal{O}_j = \mathcal{O}_{\mathbb{C}+}). \end{split}$$

Kinematical structure

The full amplitude $\mathcal{T}^{ss'}_{\sigma\sigma'\lambda}$ can be expressed as combination of $\mathcal{T}_{ss'}(\lambda_Z\lambda_\gamma)$

$$\begin{split} T^{ss'}_{\sigma\sigma'\Lambda}(f\bar{f}\gamma) &= \frac{eM_Z\mathcal{D}_Z}{s_Wc_W} \left[\sqrt{2}e^{\mathrm{i}\phi_*} \left(f^{\sigma}_R \cos^2\frac{\theta_*}{2} - f^{\sigma}_L \sin^2\frac{\theta_*}{2} \right) \mathcal{T}^{T}_{ss'}(+\lambda) \right. \\ &+ \sqrt{2}e^{-\mathrm{i}\phi_*} \left(f^{\sigma}_R \sin^2\frac{\theta_*}{2} - f^{\sigma}_L \cos^2\frac{\theta_*}{2} \right) \mathcal{T}^{T}_{ss'}(-\lambda) + \left(f^{\sigma}_R + f^{\sigma}_L \right) \sin\theta_* \mathcal{T}^{L}_{ss'}(0\lambda) \end{split}$$

$$(f_L^{\sigma}, f_R^{\sigma}) = ((T_3 - Qs_W^2)\delta_{\sigma, -\frac{1}{2}}, -Qs_W^2\delta_{\sigma, \frac{1}{2}})$$
 denote the couplings of final states fermions

$$\cos \phi_* = \frac{(\mathbf{p}_{q,e^-} \times \mathbf{p}_Z) \cdot (\mathbf{p}_f \times \mathbf{p}_{\bar{f}})}{|\mathbf{p}_{q,e^-} \times \mathbf{p}_Z| |\mathbf{p}_f \times \mathbf{p}_{\bar{f}}|}.$$

At LHC, q can be emitted from either proton beam $\to\cos\phi_*$ terms cancel out, $\cos(2\phi_*)\!=\!2\cos^2\phi_*\!-\!1$ are not affected

$$\phi_*$$
 Distribution of $\mathcal{O}_{\widetilde{B}W}\&h_3^Z$

$$\begin{split} f^0_{\phi*} &= \quad \frac{1}{2\pi} + \frac{3\pi^2 c_-^2 f_-^2 M_Z \sqrt{s} \left(s + M_Z^2\right) \cos\phi_* - 8c_+^2 f_+^2 M_Z^2 s \cos2\phi_*}{16\pi c_+^2 f_+^2 \left[\left(s - M_Z^2\right)^2 + 2(s^2 + M_Z^4) \ln\sin\frac{\delta}{2} \right]} + O(\delta), \\ f^1_{\phi*} &= \quad \frac{1}{2\pi} - \frac{9\pi (c_L x_L + c_R x_R) (f_L^2 - f_R^2) \sqrt{s} \cos\phi_*}{128 (c_L x_L - c_R x_R) (f_L^2 + f_R^2) M_Z} + \frac{s \cos2\phi_*}{4\pi (s + M_Z^2)}, \\ f^2_{\phi*} &= \quad \frac{1}{2\pi} - \frac{9\pi (x_L^2 - x_R^2) (f_L^2 - f_R^2) M_Z \sqrt{s} \cos\phi_*}{128 (x_L^2 - x_R^2) (f_L^2 - f_R^2) M_Z \sqrt{s} \cos\phi_*}, \end{split}$$

Define

$$\mathbf{O}_1 = \left| \sigma_1 \int \! \mathrm{d} \phi_* f^1_{\phi_*} \times \mathrm{sign}(\cos\!\phi_*) \right| = \mathcal{O}(s^{1/2}),$$

to get leading energy dependence of interference term.

ϕ_* Distribution of \mathcal{O}_{G+} & h_4

$$\mathbf{O}_1 = \left| \sigma_1 \int d\phi_* f_{\phi_*}^1 \times \operatorname{sign}(\cos 2\phi_*) \right| = \mathcal{O}(s),$$

to get leading energy dependence of interference term.

Sensitivity reaches at Lepton colliders

		\sqrt{s}	L	$\Lambda_{G+}^{\ell,2\sigma}$	$\Lambda_{G+}^{\ell,5\sigma}$	$\Lambda_{\widetilde{B}W}^{\ell,2\sigma}$	$\Lambda_{\widetilde{B}W}^{\ell,5\sigma}$		
		(energy)	(ab^{-1})	(unpol, pol)	(unpol, pol)	(unpol, pol) (unpol, pol)	
		250 GeV	2	(0.93, 1.1)	(0.74, 0.87)	(0.56, 0.65) (0.44, 0.51	.)	
			5	(1.0, 1.2)	(0.83, 0.97)	(0.63, 0.73) (0.49, 0.57)	
		500 GeV	2	(1.7, 2.0)	(1.3, 1.5)	(0.8, 1.0)	(0.64, 0.78)	
			5	(1.9, 2.2)	(1.4, 1.7)	(0.90, 1.1)) (<u>0.72, 0.87</u>)	
		1 TeV	2	(<mark>2.8</mark> , 3.3)	(2.3, 2.7)	(1.2, 1.4)	(0.91, 1.1))	
			5	(3.1, 3.7)	(2.6, 3.0)	(1.3, 1.6)	(1.0, 1.2)		
		3 TeV	2	(6.5, 7.7)	(5.1, 6.0)	(2.0, 2.5)	(1.6, 2.0)		
			5	(7.3, 8.6)	(5.7, 6.7)	(2.2, 2.8)	(1.8, 2.2)		
		5 TeV	2	(9.5, 11.2)	(7.5, 8.8)	(2.6, 3.2)	(2.0, 2.6)		
			5	(10.6, 12.5)	(<mark>8.4, 9.9</mark>)	(<mark>2.9</mark> , 3.6)	(2.2, 2.9)		
				e ⁻ e ⁺	$\rightarrow Z\gamma \rightarrow l^- l^+ \gamma$			_	
10	<u>Λ</u> 2σ	<u>Λ</u> 5σ		<u>Λ</u> 2σ	<u>Λ 5</u> σ	<u>Λ</u> 2σ	<u>Λ</u> 5σ	<u>Λ</u> 2σ	Δ.5σ
VS	$\Lambda \overline{G} +$	AG+		G - G - G	∩G−	- ÂW	- BW	AG+	AG+
0.25	(1.3, 1.6)	(1.0, 1.	.2)	(0.9, 1.1) (0.72, 0.89)	(1.2, 1.3)	(0.97, 1.0)	(1.2, 1.6)	(0.97, 1.2)
0.5	(<mark>2.3, 2.7</mark>)	(1.9, 2	.2)	(1.3, 1.7)	(1.1, 1.3)	(1.8, 1.9)	(1.4, 1.4)	(1.8, 2.2)	(1.4, 1.7)
1	(3.9, 4.7)	(3.2, 3	.7)	(1.9, 2.4)	(1.6, 1.9)	(2.6, 2.6)	(2.0, 2.1)	(2.6, 2.9)	(2.0, 2.4)
3	(9.2, 11.0)	(7.2, 8	.6)	(3.3, 4.2)	(2.7, 3.3)	(4.3, 4.5)	(3.5, 3.6)	(4.4, 5.2)	(3.4, 4.1)
5	(13.4, 15.9)	(10.8, 1	2.7)	(4.4, 5.5)	(3.4, 4.4)	(5.7, 5.9)	(4.5, 4.7)	(<mark>5.7, 6.8</mark>)	(4.5, 5.5)
$e^-e^+ ightarrow Z\gamma ightarrow q\bar{q}\gamma$									

The sensitivity limits on Λ are shown in pair inside the parentheses of each entry and correspond to the cases with (unpolarized, polarized) e^{\mp} beams, which are marked with (blue, red) colors. We choose a sample integrated luminosity $\mathcal{L}=5 \, \mathrm{ab}^{-1}$ and the e^{\mp} beam polarizations $(P_e^r, P_R^r) = (0.9, 0.65)$.

Sensitivities of new physics scale at e^+e^- , pp Collider) \mathcal{F}

\sqrt{s} (TeV)	$\mathcal{L}\left(ab^{-1} ight)$	Λ_{G+}	Λ_{G-}	$\Lambda_{\widetilde{B}W}$	Λ_{C+}
e ⁺ e ⁻ (0.25)	5	(1.3, 1.6)	(0.90, 1.2)	(1.2, 1.3)	(1.2, 1.6)
e ⁺ e ⁻ (0.5)	5	(2.3, 2.7)	(1.4, 1.7)	(1.8, 1.9)	(1.8, 2.2)
e ⁺ e ⁻ (1)	5	(3.9, 4.7)	(1.9, 2.5)	(2.5, 2.6)	(2.6, 2.9)
e ⁺ e ⁻ (3)	5	(9.2, 11.0)	(3.4, 4.3)	(4.3, 4.5)	(4.4, 5.2)
e ⁺ e ⁻ (5)	5	(13.4, 15.9)	(4.4, 5.6)	(5.7, 5.9)	(5.7, 6.8)
	0.14	3.3	1.1	1.3	1.4
LHC (13)	0.3	3.6	1.2	1.4	1.5
	3	4.2	1.4	1.7	1.7
	3	23	4.6	5.6	5.9
pp(100)	10	26	5.1	6.1	6.5
	30	28	5.5	6.7	7.1

Sensitivities of form factors at e^+e^- , pp Colliders

1TeV

250GeV

500GeV

3TeV

5TeV

					0.001	LHC(13TeV)	<i>pp</i> (100TeV) (a)
\sqrt{s} (TeV)	$\mathcal{L}(ab^{-1})$	$ h_4 $	$ h_{3}^{Z} $	$ h_3^{\gamma} $	10-4		■ h ₄ ■ h ₃ ^Z
e ⁺ e ⁻ (0.25)	5	(3.9, 2.0)×10 ⁻⁴	(2.7, 2.3)×10 ⁻⁴	(4.9, 1.6)×10 ⁻⁴	_ 10 -6		
e ⁺ e ⁻ (0.5)	5	(3.8, 1.9)×10 ⁻⁵	(6.2, 5.2)×10 ⁻⁵	(10, 3.7)×10 ⁻⁵	- 10		
e ⁺ e ⁻ (1)	5	(4.5, 2.3)×10 ⁻⁶	(1.5, 1.2)×10 ⁻⁵	(2.3, 1.0)×10 ⁻⁵	- 10 7		
e ⁺ e ⁻ (3)	5	(1.6, 0.84)×10 ⁻⁷	(1.7, 1.4)×10 ⁻⁶	(2.5, 1.0)×10 ⁻⁶	- 10 ⁻⁸		
1 (-1)	_	4 8	$(7, 0, 1, 0) = 10^{-7}$	(7	10-9		
$e^+e^-(5)$	5	(3.6, 1.8)×10 ⁻⁶	(5.8, 4.9)×10 ⁻⁷	(8.9, 3.4)×10 ⁻⁷		140ab ⁻¹ 300ab ⁻¹ 3ab ⁻¹	3ab-1 10ab-1 30ab-1
<i>e</i> ⁺ <i>e</i> ⁻ (5)	5 0.14	$(3.6, 1.8) \times 10^{-6}$ 9.6×10 ⁻⁶	$(5.8, 4.9) \times 10^{-7}$ 1.9×10^{-4}	$(8.9, 3.4) \times 10^{-7}$ 2.2×10^{-4}	0.001	$\frac{140ab^{-1} 300ab^{-1} 3ab^{-1}}{e^+e^-}$	$\frac{3ab^{-1} 10ab^{-1} 30ab^{-1}}{5ab^{-1}} $ (b)
$e^+e^-(5)$ LHC(13)	5 0.14 0.3	$\begin{array}{c c} (3.6, 1.8) \times 10^{-6} \\ \hline 9.6 \times 10^{-6} \\ \hline 7.5 \times 10^{-6} \end{array}$	$\begin{array}{c} (5.8, 4.9) \times 10^{-7} \\ 1.9 \times 10^{-4} \\ 1.5 \times 10^{-4} \end{array}$	$\begin{array}{c} (8.9, 3.4) \times 10^{-7} \\ 2.2 \times 10^{-4} \\ 1.8 \times 10^{-4} \end{array}$	= 0.001 10 ⁻⁴	$ \begin{array}{c} 140 ab^{-1} 300 ab^{-1} 3ab^{-1} \\ e^+e^- (ab^{-1}) \\ e^+e$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
LHC (13)	5 0.14 0.3 3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$(5.8, 4.9) \times 10^{-7}$ 1.9×10^{-4} 1.5×10^{-4} 0.80×10^{-4}	$\begin{array}{c} (8.9, 3.4) \times 10^{-7} \\ \hline 2.2 \times 10^{-4} \\ 1.8 \times 10^{-4} \\ 0.97 \times 10^{-4} \end{array}$	0.001 10 ⁻⁴ 10 ⁻⁵	140ab ⁻¹ 300ab ⁻¹ 3ab ⁻¹ e ⁺ e ⁻ (:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	5 0.14 0.3 3 3	$(3.6, 1.8) \times 10^{-6}$ 9.6 × 10^{-6} 7.5 × 10^{-6} 3.8 × 10^{-6} 4.0 × 10^{-9}	$\begin{array}{c} (5.8, 4.9) \times 10^{-7} \\ \hline 1.9 \times 10^{-4} \\ 1.5 \times 10^{-4} \\ \hline 0.80 \times 10^{-4} \\ \hline 6.1 \times 10^{-7} \end{array}$	$\begin{array}{c} (8.9, 3.4) \times 10^{-7} \\ 2.2 \times 10^{-4} \\ 1.8 \times 10^{-4} \\ 0.97 \times 10^{-4} \\ 7.2 \times 10^{-7} \end{array}$	$= 0.001$ 10^{-4} $= 10^{-5}$ 10^{-6}	140ab ⁻¹ 300ab ⁻¹ 3ab ⁻¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
e^+e^- (5)	5 0.14 0.3 3 3 10		$\begin{array}{c} (5.8, 4.9) \times 10^{-7} \\ \hline 1.9 \times 10^{-4} \\ 1.5 \times 10^{-4} \\ 0.80 \times 10^{-4} \\ \hline 6.1 \times 10^{-7} \\ 4.2 \times 10^{-7} \end{array}$	$(8.9, 3.4) \times 10^{-7}$ 2.2×10^{-4} 1.8×10^{-4} 0.97×10^{-4} 7.2×10^{-7} 4.9×10^{-7}	$= 0.001$ 10^{-4} $= 10^{-5}$ 10^{-6}	140ab ⁻¹ 300ab ⁻¹ 3ab ⁻¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>e+e</u> (5) LHC (13) <u>pp (100)</u>	5 0.14 0.3 3 3 10 30	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (5.8, 4.9) \times 10^{-4} \\ 1.9 \times 10^{-4} \\ 1.5 \times 10^{-4} \\ 0.80 \times 10^{-4} \\ 6.1 \times 10^{-7} \\ 4.2 \times 10^{-7} \\ 3.0 \times 10^{-7} \end{array}$	$(8.9, 3.4) \times 10^{-7}$ 2.2×10^{-4} 1.8×10^{-4} 0.97×10^{-4} 7.2×10^{-7} 4.9×10^{-7} 3.5×10^{-7}	$\begin{array}{c} 0.001 \\ 10^{-4} \\ 10^{-5} \\ 10^{-6} \\ 10^{-7} \end{array}$	140ab ⁻¹ 300ab ⁻¹ 3ab ⁻¹	$3ab^{-1}$ $10ab^{-1}$ $30ab^{-1}$ $5ab^{-1}$ (b) ab_{1}^{2} ab_{1}^{2} ab_{2}^{2} ab_{3}^{2} $ab_{$

- nTGCs provide unique probe of dimension-8 SMEFT operators
- We propose new nTGC form factor formalism which match Dimension-8 SMEFT Conventional nTGC form factor formalism disregards SU(2)×U(1) of SM ATLAS and CMS are redoing the analysis
- Sensitivity can reach 1TeV at CEPC
- Sensitivity in 3-4TeV range at LHC
- Sensitivity can reach $\mathcal{O}(20-30) \text{TeV}$ at SPPC

Unitary Bounds

$$\begin{split} \Lambda_{G+} &> \quad \frac{\sqrt{s}}{(24\sqrt{2}\,\pi)^{1/4}} \simeq 0.311\sqrt{s} \ , \\ \Lambda_{j} &> \quad \left(\frac{c_{L,R}'M_Z}{12\sqrt{2}\,\pi}\right)^{\frac{1}{4}} (\sqrt{s}\,)^{\frac{3}{4}} \simeq 0.203 \left(c_{L,R}'\right)^{\frac{1}{4}} \left(\text{TeV}\sqrt{s^3}\right)^{\frac{1}{4}} \ , \end{split}$$

\sqrt{s} (TeV)	0.25	0.5	1	3	5	23
Λ_{G+} (TeV)	0.078	0.16	0.31	0.93	1.6	7.2
$\Lambda_{\widetilde{B}W}$ (TeV)	0.058	0.098	0.16	0.37	0.55	1.7
Λ_{G-} (TeV)	0.050	0.084	0.14	0.32	0.47	1.5
Λ_{C+} (TeV)	0.060	0.10	0.17	0.39	0.57	1.8
$ h_4 $	33	2.1	0.13	0.0016	2.1×10^{-4}	4.6×10^{-7}
$ h_3^Z $	53	6.6	0.83	0.031	6.7×10^{-3}	6.8×10^{-5}
$ h_3^{\gamma} $	54	6.7	0.84	0.031	6.7×10^{-3}	6.9×10^{-5}

Unitary bounds $(f\bar{f} \rightarrow Z\gamma)$ are much weaker than our sensitivity bounds!

 $|h_3^V|$