NLO Physics Simulation with Whizard

Wolfgang Kilian with slides from Pia Bredt

CPPS, University of Siegen

CEPC 23, Nanjing, Oct 24, 2023

The Whizard MC generator

1999 WHIZARD 1 + 2007 Whizard 2

Hard-interaction physics at high-energy colliders (LHC, ILC, ...)

- Tree-level ME code generated&linked on-the-fly by O'Mega
- Universal multi-channel integrator VAMP
- Cross sections, distributions, event streams (HepMC, LCIO, ...)
- Full polarization support
- Beam spectra/ISR/PDF, shower/hadronization (PYTHIA), etc.
- SM and BSM models

Applications:

ILC/CLIC samples for physics studies

Signal and background processes for LHC analyses

Future collider studies (muon collider, photon collider, etc.)

2021 Whizard 3 (this talk)

MPI/OpenMP, UFO, improvements/updates, NLO (full SM)

Matrix Elements for Hard Processes (LO)

O'Mega:

automated perturbative helicity-amplitude calculation for multi-leg processes with interfering resonances [hep-ph/0102195]

- ► avoid redundant common subexpressions altogether: no Feynman-graph expansion ⇒ factorial growth of # terms reduced to power law
- color-flow formalism (phantom 9th gluon) [JHEP 10 (2012) 022]

Matrix Elements for Hard Processes (NLO)

$\mathsf{EW} + \mathsf{QCD} \text{ at } \mathsf{NLO}$

 Virtual matrix elements: One-Loop Provider (GoSam, Recola, OpenLoops, etc.)

One-loop amplitudes = NLO in any gauge/Yukawa/Higgs coupling, UV-renormalized

Real-radiation matrix elements: O'Mega or also OLP

IR and collinear cancellation against massless radiation is (slightly) non-local in phase space

⇒ Subtraction algorithm (e.g. Catani-Seymour or Frixione-Kunszt-Signer)

FKS subtraction for soft/collinear cancellation

$$\sigma_{\mathsf{NLO}} = \underbrace{\int d\Phi_n \mathcal{B}}_{\mathsf{Born}} + \underbrace{\int d\Phi_{n+1} \mathcal{R}}_{\mathsf{div. real}} + \underbrace{\int d\Phi_n \mathcal{V}}_{\mathsf{div. virtual}} = \mathsf{finite}$$

For observables exclusive in kinematic properties:

$$\sigma_{\rm NLO} = \int d\Phi_n \mathcal{B} + \int \underbrace{d\Phi_{n+1} \left[\mathcal{R} - d\sigma_{S}\right]}_{\text{finite by construction}} + \underbrace{\int d\Phi_n \mathcal{V} + \int d\Phi_n d\sigma_{S,\text{int}}}_{\text{IR poles cancelled analyt.}}$$

'j' radiated with several different emitters \Rightarrow Subtract singularities related to QED splittings systematically Divide phase space into disjoint regions with at most **one** soft and/or collinear singularity.

 \Rightarrow kinematical weight factors related to pairs (i, j)

LHC: on-shell heavy bosons at NLO EW

Cross-validation of WHIZARD and MUNICH/MATRIX orig. ref. [Kallweit et. al.: 1412.5157]

	process	MUNICH(CS)	$\sigma_{\rm NLO}^{\rm tot}$ [fb]	WHIZARD	$\sigma_{\rm NLO}^{\rm tot}$ [fb]	δ [%]	dev [%]	$\sigma_{\rm NLO}^{\rm sig}$
_	$pp \rightarrow$ +OpenLoops		s	+OpenLoops				
_	ZZ	1.057	$29(1) \cdot 10^4$	1.0572	$(9(11) \cdot 10^4)$	-4.20	0.0001	0.01
	W^+Z	1.715	$05(2) \cdot 10^4$	1.715	$07(2) \cdot 10^4$	-0.15	0.001	0.88
	W^-Z	1.085	$76(1) \cdot 10^4$	1.085	$74(1) \cdot 10^4$	+0.07	0.001	0.90
	W^+W^-	7.931	$06(7) \cdot 10^4$	7.9308	$37(21) \cdot 10^4$	+4.55	0.002	0.89
	ZH	6.185	$23(6) \cdot 10^2$	6.185	$33(6) \cdot 10^2$	-5.29	0.002	1.17
	W^+H	7.180	$70(7) \cdot 10^2$	7.180	$(72(9) \cdot 10^2)$	-2.31	0.0003	0.18
	W^-H	4.592	$89(4) \cdot 10^2$	4.592	$199(5) \cdot 10^2$	-2.15	0.002	1.62
_	ZZZ	9.74	$29(2) \cdot 10^0$	9.741	$.7(11) \cdot 10^{0}$	-9.47	0.012	1.01
	W^+W^-Z	1.082	$88(2) \cdot 10^2$	1.0829	$3(10) \cdot 10^2$	+7.67	0.004	0.45
	W^+ZZ	2.01	$88(4) \cdot 10^{1}$	2.018	$8(23) \cdot 10^{1}$	+1.58	0.0001	0.01
	W^-ZZ	1.098	$44(2) \cdot 10^{1}$	1.0983	$8(12) \cdot 10^{1}$	+3.09	0.006	0.51
	$W^{+}W^{-}W^{+}$	8.79	$79(2) \cdot 10^{1}$	8.799	$1(15) \cdot 10^{1}$	+6.18	0.014	0.79
	$W^{+}W^{-}W^{-}$	4.94	$47(1) \cdot 10^1$	4.94	$41(2) \cdot 10^{1}$	+7.13	0.013	2.52
	ZZH	1.916	$07(2) \cdot 10^0$	1.9161	$4(18) \cdot 10^0$	-8.78	0.004	0.39
	W^+ZH	2.480	$68(2) \cdot 10^0$	2.4809	$(5(28) \cdot 10^{0})$	+1.64	0.011	0.96
	W^-ZH	1.340	$01(1) \cdot 10^0$	1.3401	$.6(15) \cdot 10^0$	+2.51	0.011	1.02
	W^+W^-H	9.70	$12(2) \cdot 10^{0}$	9.7	'00(2) · 10 ⁰	+9.83	0.014	0.75
	ZHH	2.39350	$(2) \cdot 10^{-1}$	2.39337	$(32) \cdot 10^{-1}$	-11.06	0.005	0.41
	W^+HH	2.44794	$(2) \cdot 10^{-1}$	2.44776	$(24) \cdot 10^{-1}$	-12.04	0.007	0.74
	W^-HH	1.33525	$5(1) \cdot 10^{-1}$	1.33471	$(19) \cdot 10^{-1}$	-11.53	0.041	2.80
LHC setup (Run II) $\delta \equiv \frac{\sigma_{\text{NLC}}^{\text{tot}}}{\sigma_{\sigma_{\text{NLC}}}}$			$\frac{d}{d}$ dev \equiv	$lev \equiv \frac{ \sigma_{\mathtt{WHIZARD}}^{\mathtt{tot}} - \sigma_{\mathtt{MUNICH}}^{\mathtt{tot}} }{\sigma_{\mathtt{WHIZARD}}^{\mathtt{tot}}}$		$\sigma^{\text{sig}} \equiv \frac{ \sigma_{\text{WHIZARD}}^{\text{tot}} - \sigma_{\text{MUNICH}}^{\text{tot}} }{\sqrt{\Delta_{\text{err, WHIZARD}}^2 + \Delta_{\text{err, MUNICH}}^2}}$		
W	. Kilian (U Siege	en)		Whizard			0	ct 24, 2023

6/19

Multi-boson processes at a muon collider at NLO EW

[PB, W. Kilian, J. Reuter, P. Stienemeier, 2208.09438] WHIZARD+RECOLA, G_{μ} scheme, $m_{\mu}=0.1056...$ GeV

$\mu^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{\sf LO}^{\sf incl}$ [fb]	$\delta_{\sf EW}$ [%]	δ_{ISR} [%]
$W^{+}W^{-}$	$4.6591(2) \cdot 10^2$	+4.0(2)	+13.82(4)
ZZ	$2.5988(1) \cdot 10^{1}$	+2.19(6)	+15.71(4)
HZ	$1.3719(1) \cdot 10^{0}$	-1.51(4)	+30.24(3)
W^+W^-Z	$3.330(2) \cdot 10^{1}$	-22.9(2)	+2.90(9)
W^+W^-H	$1.1253(5) \cdot 10^{0}$	-20.5(2)	+7.10(8)
ZZZ	$3.598(2) \cdot 10^{-1}$	-25.5(3)	+5.24(8)
HZZ	$8.199(4) \cdot 10^{-2}$	-19.6(3)	+8.39(8)
HHZ	$3.277(1) \cdot 10^{-2}$	-25.2(1)	+7.58(7)
$W^{+}W^{-}W^{+}W^{-}$	$1.484(1) \cdot 10^0$	-33.1(4)	-1.3(1)
W^+W^-ZZ	$1.209(1) \cdot 10^{0}$	-42.2(6)	-1.8(1)
W^+W^-HZ	$8.754(8) \cdot 10^{-2}$	-30.9(5)	-0.1(1)
W^+W^-HH	$1.058(1) \cdot 10^{-2}$	-38.1(4)	+1.7(1)
ZZZZ	$3.114(2) \cdot 10^{-3}$	-42.2(2)	+0.8(1)
HZZZ	$2.693(2) \cdot 10^{-3}$	-34.4(2)	+1.4(1)
HHZZ	$9.828(7) \cdot 10^{-4}$	-36.5(2)	+2.2(1)
HHHZ	$1.568(1) \cdot 10^{-4}$	-25.7(2)	+5.7(1)

with $\delta_{\rm EW}=\sigma_{\rm NLO}^{\rm incl}/\sigma_{\rm LO}^{\rm incl}-1$ and $\delta_{\rm ISR}=\sigma_{\rm LO,LL-ISR}^{\rm incl}/\sigma_{\rm LO}^{\rm incl}-1$

Multi-boson processes at a muon collider at NLO EW

[PB, W. Kilian, J. Reuter, P. Stienemeier, 2208.09438]

<u>Fixed order differential distributions</u>: $d\sigma(\mu^+\mu^- \rightarrow HZ)/d\cos\theta_H$

Beam Properties (e^+e^-)

Beamstrahlung

- Detailed simulation of machine and interaction region (GuineaPig)
 to be repeated for each parameter set
- ► Circular colliders: beamstrahlung ⇒ beam-energy spread
- Fit to beam-simulation data
 - parameterized spectra (Circe1)
 - beam-event generator (Circe2)

https://whizard.hepforge.org/circe.html

Beamstrahlung interfaced with MCGenerator

- Whizard: integrated in e^+e^- physics simulation framework
- Others: Circe2 available as plug-in module

CEPC Items

NLO (full EW + QCD) for e^+e^-

- Matrix elements: available (GoSam, Recola, OpenLoops), as in $\mu^+\mu^-$
- NLO structure functions for (massless) electrons [Frixione, et al.]:
 - implemented, working on complete numerical stability (near x = 1)
 - to be validated (ILD, etc.)
- ▶ PowHeg matching and Pythia8 ⇒ full NLO events

And. . .

- Beam simulation data to be established
- NNLO: future developments

Conclusions and Outlook

- Whizard is a viable tool for physics studies and analyses at HEP experiments: LHC, Belle II, ILC/CLIC/FCC/CEPC, MuCol, ...
- Any SM (NLO) and BSM processes can be handled, limited mainly by external programs and CPU time
- Specific support for e⁺e⁻ to be improved to full SM NLO (and SMEFT,...)

The WHIZARD 3 Team

U Siegen: WK, Pia Bredt, Nils Kreher, Tobias Striegl
DESY: Jürgen Reuter, Krzysztof Mękała (S. Brass, B. Chokoufe, V. Rothe, P. Stienemeier, C. Weiss)
U Würzburg: Thorsten Ohl
U Warsaw (exp.): Filip Żarnecki

Links

- Reference: WK/Ohl/Reuter, EPJ C71 (2011) 1742
- WHIZARD Portal: https://whizard.hepforge.org/
- Launchpad Page: https://launchpad.net/whizard

gitlab repo:

https://gitlab.tp.nt.uni-siegen.de/whizard/public

BACKUP

Technical Remarks

Language: Fortran (2018, object-oriented/modular) with O'Caml Development: gitlab with automated test suite and Cl Installation: configure && make && make install Numerics: Support for extended and quadruple precision (if needed) Running: Options

- Stand-alone with input script: whizard (input).sin (optional workspace transfer for cluster operation)
- 2. As a library, callable from: Fortran, C, C++, Python
- BSM: Predefined (many models) and UFO (everything else)
- Script: SINDARIN (input, parameters, cuts, workflow, result aggregation, output control, ...)
- Parallel: OpenMP (multi-core), MPI (HPC cluster)

Hadron collisions at NLO EW

Hadron collisions at NLO EW

IR-safety conditions:

- photon recombination with charged leptons 'dressed' leptons
- jet clustering including photon 'democratic' jets

Pure electroweak pp processes with off-shell vector bosons LHC setup (Run II): $\sqrt{s} = 13$ TeV $\mu_R = \mu_F = \frac{1}{2} \sum_i \sqrt{p_{T,i}^2 + m_i^2}$ EW scheme: G_{μ} CMS PDF set: LUXqed_plus_PDF4LHC15_nnlo_100 cuts from ref. [1804.10017]

process	α^m	MG5_aMC@NLO[1804.10017] WHIZARD+		oops	$\sigma_{\rm NLO}^{\rm sig}$
pp ightarrow		$\sigma_{\sf NLO}^{\sf tot}$ [pb]	$\sigma_{\sf NLO}^{\sf tot}$ [pb]	δ [%]	NEO
$e^+ \nu_e$	α^2	$5.2005(8) \cdot 10^3$	$5.1994(4) \cdot 10^3$	-0.73	1.24
e^+e^-	α^2	$7.498(1) \cdot 10^2$	$7.498(1) \cdot 10^2$	-0.50	0.004
$e^+ u_e\mu^-ar u_\mu$	α^4	$5.2794(9) \cdot 10^{-1}$	$5.2816(9) \cdot 10^{-1}$	+3.69	1.69
$e^+e^-\mu^+\mu^-$	α^4	$1.2083(3) \cdot 10^{-2}$	$1.2078(3) \cdot 10^{-2}$	-5.25	1.26
$He^+ u_e$	α^3	$6.4740(17) \cdot 10^{-2}$	$6.4763(6) \cdot 10^{-2}$	-4.04	1.24
He^+e^-	α^3	$1.3699(2) \cdot 10^{-2}$	$1.3699(1) \cdot 10^{-2}$	-5.86	0.32
Hjj	α^3	$2.7058(4) \cdot 10^{0}$	$2.7056(6) \cdot 10^{0}$	-4.23	0.27
tj	α^2	$1.0540(1) \cdot 10^2$	$1.0538(1) \cdot 10^2$	-0.72	0.74

Final-state effects

- Jets: integrated FastJet interface
- Polarized decays (e.g., W, Z, H, t) as alternative to full matrix elements
- Tau decays via TAOLA
- Resonance selection for shower initialization
- Parton shower + hadronization: PYTHIA6 (integrated)
- Parton shower + hadronization: Pythia 8 (interface or via event file)
- Event file formats: ILC-like (legacy, LCIO/Key4HEP) and LHC-like (legacy, LHE, HepMC)

Polarization in Whizard

- Lazy method for simulation: merge distinct event samples with 100% ±left/right polarization
- "Classical" polarization: project on helicities and postprocess particles with definite helicity
- "Quantum" method: polarization via initial-state and final-state density matrices, allows for arbitrary polarization fraction, spin rotation, polarized decays, etc.
 ⇒ supported in Whizard since v1
- Polarization of outgoing particles: depend on event-file formats
- ⇒ NLO: polarization support relies on spin-correlated squared matrix element output

Specific Processes

$e^+e^- ightarrow t ar{t}$ (and $t ar{t} H$)

- tt on-shell multi-loop / threshold resummation
- off-shell NLO MC + threshold resummation: Whizard

Soft Background

- $\blacktriangleright \ \gamma\gamma \rightarrow {\rm hadrons}$
 - \Rightarrow SLAC code based on Chen, Barklow, Peskin, PRD49 (1994)