

Development of High-Granularity Crystal ECAL for CEPC

Zhiyu Zhao (TDLI/SJTU)

On Behalf of CEPC Calorimeter Working Group

CEPC Workshop - NJU, Oct. 23-27, 2023

Introduction

- CEPC: future circular lepton collider
 - Higgs/W/Z bosons, top, BSM searches, etc.
 - PFA calorimeter: promising to achieve 3-4% jet resolution
- New "CEPC 4th concept" detector
 - High-Granularity crystal ECAL

Overview of High-Granularity Crystal ECAL

Conceptual design

- Crystals arranged to be perpendicular between layers
- Readout from two sides

Hardware development

Units test of BGO and SiPMCrystal modules for beamtest

Software development

and a set of the set o

Dedicated reconstruction software

Performance evaluation and optimization

Weizheng's poster

ECAL Designs for CEPC

Si-W ECAL

- Baseline design
- Sampling structure
- High granularity
- Strong shower separation

Crystal ECAL

- New design
- Homogeneous structure
- High granularity
- High energy resolution $(3\%/\sqrt{E} \text{ intrinsic resolution})$

ECAL Performance Comparison: BMR

- Higgs boson mass resolution(BMR) improvement:
 - $H \rightarrow gg: 4.5\% \rightarrow 3.6\%$
 - $H \rightarrow \gamma \gamma$: 2.1% \rightarrow 1.2%
- Better BMR with crystal ECAL

BMR $(H \rightarrow \gamma \gamma)$

ECAL Performance Comparison : π^0/γ **Reconstruction**

- $B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma$ measurement
 - Necessary channel to determine CKM angle α
 - ECAL performance can be characterized by σ_{m_B}
- Crystal ECAL: more potentials for π^0/γ reconstruction (flavor physics)

Mass	Resolution	of	0in
111433	1 COOLUUN		

	ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$	
SiW	$17\%/\sqrt{E}\oplus 1\%$	170	~ 1.2%	$\sim 21\%$	3-
Crystal	$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$] ↓ ⁱⁿ

Overview of Crystal ECAL Specifications

Key Parameters	Value	Notes
MIP light yield	~200 p.e./MIP	9.1 MeV/MIP in 1cm BGO
Energy threshold	0.05 MIP	Depends on S/N and light yield
Crystal non-uniformity	<1%	After calibration
Dynamic range	$5 - 10^5$ p.e.	About 500keV – 10GeV
Time resolution	~400 ps	Ideal performance (from G4 simulation)
Temperature stability	Stable at the level of 0.05°C	CMS ECAL value

Further issues:

- Temperature control
 - Temperature dependent properties (SiPM, crystal)
 - Cooling system for Front-end electronics

- Calibration schemes
 - LED single photon calibration of SiPMs
 - Transmittance of crystal: radiation damage
 - Operation and maintenance: MIP calibration

EM Energy Resolution: Threshold and Light Yield Requirements

- Impact on energy threshold and light yield
 - Digitization: photon statistics (crystal + SiPM), electronics resolution
 - ~200 p.e./MIP light yield and low threshold: promising for ~1.6%/ \sqrt{E} energy resolution

Test of Radioactive Sources for Long Crystal Bar

- BGO crystal bar coupled with SiPM
 - Energy resolution of : 11.2% @662keV
 - Light yield: ~200 p.e./MeV, enough for the LY requirement
 - Uniformity scan: <5% non-uniformity

Experiment: detected photon

- Relatively low response near one side
- Coupling, crystal manufacture.....

SiPM Dynamic Range Test

- Maximum energy deposition in one crystal(from Bhabha electrons):
 ~10GeV → ~ 5 × 10⁴ p.e.(1 side)
- Setup
 - Pico-second laser: ~40ps pulse width, 405nm wavelength
 - Beam splitter: divide the light between SiPM and PMT
 - SiPM: HPK S14160-3010PS, 10µm pixel, 89984 pixels
 - PMT: determine the number of pe that SiPM received
 - Si-PIN: auxiliary scaler

Number

Studies on wide dynamic-range SiPMs with high pixel densities, Zhiyu Zhao – TIPP2023

Toy Monte Carlo for SiPM Response

- MC with SiPM recovery effect:
 - Incident time of photon comes from Geant4 optical simulation of a $1 \times 1 \times 40 cm^3$ BGO crystal bar
 - Uniform light spot on SiPM
 - SiPM PDE spectrum and BGO emission spectrum
- $1 \times 1 \times 40 cm^3$ BGO crystal bar readout by SiPMs with $10\mu m$ pixel and $3 \times 3 cm^2$ size can maintain linearity >95% at 5×10^4 pe

Toy Monte Carlo w/:

- SiPM pixel density, PDE spectrum, crosstalk, pixel recovery effect
- BGO emission spectrum,

scintillation photon detected time

Time Resolution of BGO Crystal Bar

Development of Crystal Modules

- Motivations
 - Identify critical questions/issues on system level:
 - Frond-end ASIC, mechanics, integration, ...
 - Evaluate key performance with TB data
 - Validation of simulation and digitization

- First crystal module, 72 channels , $10.7X_0$
- First beamtest at CERN PS-T9(May, 2023)
- Main target: first module commissioning

- Second module, 144 channels, $21.4X_0$
- Beamtest at DESY TB22(Oct, 2023)
- Main goals: EM performance

Large scale prototype with longer bars and more channels?

<u>High Granularity Crystal Calorimeter R&D Progress, Baohua Qi – CALICE FZU Prague</u>

Small-Scale Crystal Module Design: Impact of Module Size

- For EM showers, 12 cm size is enough to contain most of the energy when particles hit on the center of the module
- Degradation of energy resolution: ~0.1% level

$25X_0$ in beam direction

First Crystal Module: Uniformity Scan of BGO Crystal Bars

- Batch test of SIC-CAS BGO crystal bars
 - 40 crystals with ESR and Al foil wrapping
 - Scan with Cs-137 radioactive source

- Generally good uniformity along a single bar
- Response varies among bars, 36 crystals were selected for beamtests

First Crystal Module: Transport and Preparations

- Preparation since the end of 2022
 - Simulation, mechanical design, PCB design, crystal production...
- Successful transportation from Beijing to CERN in May. 2023
- First beamtest at CERN PS-T9, together with CEPC Sci-W ECAL and AHCAL prototype Status of high granular sci-ECAL, Tatsuki Murata

CEPC AHCAL beam test data analysis, Siyuan Song

First Crystal Module: Mechanics and DAQ

- Mechanical structure and PCB design
 - Four readout PCBs with SiPMs and temperature sensors
 - 3D print PLA to provide support and shadowing
 - Pressure decoupled between crystal and SiPM

First Crystal Module: Setup for Beamtest

First Crystal Module: Muon Data for Parameter Scans and Calibration

- 10 GeV/c muon- beam: MIP response
 - High-gain and Low-gain scans
 - Hold-Delay / Shaping time scans
 - Channel-by-channel calibration

< 19 >

First Crystal Module: Electron Data for Energy Resolution

• MIP calibration: channel-wise calibration with muon beam

Entries

Std Dev

Overflow

Constant

 χ^2 / ndf

Prob

Mean

Sigma

5000

6000

Underflow

Mean

- Event selection: beam incidence at the module center (wide beam profile)
- Simulation of beamtest experiments: electron events

Energy Deposition 4 GeV Electron

Implemented realistic module geometry, upstream material, beam profile, momentum spread...

30326

3258

495.3

26.64 / 27

 586.7 ± 6.9

3481 + 3.5

 212.9 ± 7.3

7000

Energy / MeV

0.4833

0

12

Percentage [%]

• Significant energy leakage effects due to the limited depth (10Eh Kgy) Resolution

Beam profile: severe changes in the spatial distribution of the beam spot

Achieved major goals

Events

600

500

400

300

200

100

- Commissioning of the first crystal module
- Validation of simulation+digitistaion

Second Crystal Module: Preparations and Transport

- Preparation the second module since Jun. 2023
- Transportation from Beijing to DESY in Sep. 2023
- Beamtest at DESY TB22, Oct. 2 ~ Oct. 15
 - Also tested long crystal bars and new ASIC

Second Crystal Module: Setup and Tasks

Second Crystal Module: EM performancess

- More channels: 72ch 144ch $(10.7X_0 \rightarrow 21.4X_0)$
- New mechanics structure
- New PCBs: reduce noise and crosstalk
- Dark box: light and electromagnetic shielding
- Evaluate EM performance and understand possible limitations of existing ASICs
- Long crystal bars: time resolution
 - 40/60 cm
 - Time resolution with crystal bars and position dependence
 - Time resolution at different shower depths
- New ASIC(MPT2321) for 32-ch SiPM readout
 - Large dynamic range
 - Good S/N for single photon calibration
- Scintillating glass tiles
 <u>CEPC glass scintillator calorimeter simulation, Peng Hu</u>
 Glass scintillator R&D. Sen Qian

Crystal Modules Crigital Modu

DESY TB22 beam condition

- 1~6GeV single electron beam, a few multiparticle events
- ~10kHz maximum repetition rate
- Adjustable spot size, momentum divergence

Second Crystal Module at DESY

10.0 7.5 5.0 2.5 0.0 aXis -2.5 -5.0 -7.5 -10.0 -7.5 -10.0 15 -5.0 10 -2.5 + 0.0 *+; 2.5 5 y axis -5 5.0 7.5 -10

10.0 -15

Data analysis is ongoing...

Acknowledgment

- Thank you to every one who works on the team
- Enormous and substantial support from CERN, DESY, CALICE and CEPC
- Funding support from CAS

Summary and Prospects

- High-granularity crystal calorimeter
 - Optimal EM energy resolution, potential for BMR and π^0/γ reconstruction
- Crystal-SiPM lab measurements
 - Easy to meet the requirements of 100 p.e./MIP light yield
 - Dynamic range of SiPM with 10µm pixel is enough for BGO output
 - MIP time resolution ~1ns
- Crystal module development
 - Complete the first beamtest of the first module at CERN. The preliminary performance was given.
 - Complete beamtest for the second upgraded crystal module at DESY. Data analysis is ongoing.

Backup

Low Energy Photon Detection of BGO

- BGO has the ability to detect low-energy photons
- SiPM: HAMAMATSU C13360-3050SA
- BGO crystals with different sizes
- Source: Cs-137, 662keV γ

PCB Layout

Front side

< 28 >

General Geometry Design for Crystal ECAL

General Geometry Design for Crystal ECAL

Linear Region Selection for PMT

- Select the linear region of PMT with a Si-PIN at different light intensities
 - Weak light intensity \rightarrow 600V
 - Strong light intensity \rightarrow 500V
- Combination of discrete linear regions can keep linear within the whole light range

Number of pe Calibration

- Gain of PMT is not high enough to discriminate single pe with 600V bias voltage
- SiPM calibrates PMT in weak light intensity region

