2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

Oct 23-27, 2023 Nanjing, China

MINISTERIO DE CIENCIA E INNOVACIÓN

SEM - D GITAL HCAL WITH RPC AND MRPC **MARY-CRUZ FOUZ** CIEMAT

SDHCAL – MAIN CHARACTERISTICS

Sampling calorimeter. Absorber: Stainless Steel + Detector: Glass Resistive plate Chambers

Absorber: Stainless steel

Absorber plates up to ~3x1 m² . Surface planarity < 1mm , Thickness 15mm, tolerance 50µm

Plates (15mm) assembled together by using an intermediate **spacer** insuring the place for introducing the detectors

Detail after assembly the first 4 absorber plates of a 1.3m³ prototype (plates ~1x1m²)

Detector: GRPC (Glass Resistive Plate Chambers) operating in avalanche mode

1x1 cm² pads. Semi-Digital Readout, 2bits - 3 thresholds

→ It counts how many and which pads have a signal larger than one of the 3 thresholds

Embedded electronics:

PCB separated from the GRPC by a mylar layer (50 μ m).

- → Bottom: 1x1cm2 pads
- → Top: HARDROC (HAdronic Rpc ReadOut Chip) & related connections
 Power-pulsed electronics (only for linear colliders): In stand-by during
 dead time in between collisions or spills in beam tests

Ciemat

1M³ SDHCAL PROTOTYPE

workshop on the high energy Circular Electron Positron Collider (CEPC)

0ct 23-27, 2023 Nanjing, China

2023 international

3

SNAPSHOT ON PERFORMANCE & RECONSTRUCTION

Advantage of (semi)-digital vs analog \rightarrow It allows a higher granularity at lower costs.

Granularity is crucial to improve the jet energy resolution using Particle Flow Algorithms.

Advantage of semi-digital vs digital → Multi-threshold improves resolution

[CEPC]

ectron Positron Co

Ē

China

Oct 23-27, 2023 Nanjing,

2023 internatio

When increasing energies the binary produces saturation (mainly in the core of the shower). The number of particles crossing a single pad increases

Single track reconstruction with Hough transform techniques

Nearby hadronic showers separation

Improved resolution

PID: BDT & MVA technique

M.C Fouz

Ciemot

TOWARDS FULL SIZE CALORIMETERS - CHALLENGES

Some general Challenges

- > High precision mechanics
- Embedded electronics
- > Low power consumption
- Very uniform response despite the large number of channels

Circular vs linear colliders extra difficulties

- Continue readout
- Higher rates

In addition coolling system must be considered

Sem

MRPC

CHALLENGES – HIGH PRECISION MECHANICS

Procedures developed with roller leveling for improving planarity of absorber plates (1x3m²) from several mm to ~500 microns

Development of Electron Beam Welding assembly protocols to reduce deformations introduced by welding procedures below mm level (600 microns in this test with 5 plates 3x1 m²)

tron Collider (CEPC)

orkshop on the high energy Circular Electro

0ct 23-27, 2023 Nanjing, China

2023 international

Larger modules (more plates) → bigger machine needed & complicated handling (heavy structure to be moved an rotated several times)

Possible option → build sub-modules and after weld them using laser welding The procedure should introduce reasonable deformations (the rigidity of the modules is much higher than for individual plates)

M.C Fouz

Ciemat

6

CHALLENGES - ELECTRONICS

er (CEPC)

Chin,

2023 internatio

Electronics must be compact despite the huge number of channels \rightarrow Embedded in the calorimeter Homogeneous response -> Stringent planarity requirements for PCBs to insure homogeneous contact of pads with RPCs Lower power consumption -> Power pulsing for linear colliders, more developments needed for circular

INCLUDING PRECISION TIME MEASUREMENTS 5D CALORIMETER - WHY?

Timing could be an important factor to identify delayed neutrons and better reconstruct their energy

[CEPC]

ar Electron Positron Collid

5

0ct 23-27, 2023 Nanjing, China

2023 internati

Time information can help to separate close by showers and reduce the confusion for a better PFA application. Example: pi-(20 GeV), K-(10 GeV) separated by 8 cm.

INCLUDING PRECISION TIME MEASUREMENTS 5D CALORIMETER - HOW?

♦ Chambers: GRPC → MultiGap - GRPC

will improve the intrinsic timing of the calorimeter

Time resolution of *better than 100 ps* was obtained with **5-gap RPC** by Tsinghua group

Low resistive materials could /should be used to increase the rate capability

Electronics: An ASIC with a fast preamplifier, precise discriminator and excellent TDC

DEVELOPMENTS ON MULTIGAP GRPC CHAMBERS

X-Y Strip

4mm Strip width

Ciemat

DEVELOPMENTS ON MULTIGAP GRPC CHAMBERS FOR HIGH RATES

Low resistivity glass for high rates

Glass resistivity ~ 10¹⁰ Ωcm Glass thickness : 500 μm

2 stack 5 gaps Ceramic fishing line

Sen

ELECTRONICS FOR PRECISION TIME CALORIMETER – ASICS -

"Present" BaseLine

cular Electron Positron Collider (CEPC)

workshop on the high en

Chim:

Oct 23-27, 2023 Nanjing,

2023 international

- 32 channels
- on-chip TDC
- Time resolution below 40ps

Pros: Embeds the preamp, the TDC , a QDC Con: Limited digital logic, difficult to chain, deadtime

Developed at CNRS-OMEGA partially thanks to AIDA2020 for CMS-muon upgrade

It is not the ASIC for the long term, only for exploring the RPC capabilities. Must be substituted in the future due to its limitations

Other option being used

NINO Designed for the ALICE MRPC (TOF array) - 8 channels - Time resoltion ~50 ps

Medium/long term possible option

64 channels Time resolution <12 ps

Ciemat

M.C Fouz

1 2

ELECTRONICS FOR PRECISION TIME CALORIMETER – READOUT -

Two different Active Sensitive Unit (ASU) under development

> For small prototypes

For Larger prototypes

1 3

Semi-di

igital HCA

L with RPC and MRPC

ELECTRONICS FOR PRECISION TIME CALORIMETER - READOUT -

Two different Active Sensitive Unit (ASU) under development

> For small prototypes

Validation performedReference voltage checks

Collider (CEPC)

workshop on the

2023 internatio

China

0ct 23-27, 2023 Nanjing,

- Thresholds tests
- No crosstalk
- Timing by injecting signal
 - between neighbor channels $\sigma(\Delta t_{12}) = 45.8$ ps
 - between 2 chips $\sigma(\Delta t_{12}) = 53.6$ ps

asic1; chn0; freq=25khz

ELECTRONICS FOR PRECISION TIME CALORIMETER – READOUT -

1 5

SG

ELECTRONICS FOR PRECISION TIME CALORIMETER – READOUT -

Two different Active Sensitive Unit (ASU) under development

For small prototypes

For Larger prototypes

Local FPGA embedded on board

1 6

POWER CONSUMPTION AND COOLING

The duty cycles of CEPC/FCCee are different from that of ILC and no power pulsing is possible.

→ Power consumption increases by a factor of 100-200
→ Active cooling is needed

But it should not add too much dead zone.

GROUPS INVOLVED

CIEMAT (SPAIN)

CNRS - IP2I (FRANCE)

CNRS - LPC (FRANCE)

CNRS - OMEGA (FRANCE)

GANGNEUNG-WONJU UNIVERSITY (SOUTH KOREA)

SHANGHAI JIAO TONG UNIVERSITY (CHINA)

VRIJE UNIVERSITEIT BRUSSEL (BELGIUM)

YONSEI CANCER CENTER (KOREA)

Semi-di

ital HCA

with RPC and MRPC

19

Extra material

2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

Oct 23-27, 2023 Nanjing, China

Semi-d

FROM 1M3 TO LARGER PROTOTYPES-ELECTRONICS: ASIC,PCB,DIF

\triangleright	New ASIC	HADROC3 (HR3)	Zero suppress Extended dynamic range (up to 50 pC) I2C link with triple voting for slow control parameters packaging in QFP208, die size ~30 mm2
\succ	New ASU	The ASU (A ctive S ensor U nit) hosts the ASICs and connect them to the rest of electronics	
	1m X 0.33 m2, 12 layers ASU with new rooting design		

New DIF & DAQ

2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

0ct 23-27, 2023 Nanjing, China

DIF (Detector InterFace) sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- HR3 slow control through I2C bus (12 IC2 buses).

Keeps also 2 of the old slow control buses as backup & redundancy.

- Data transmission to/from DAQ by Ethernet
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors

(vs 8.6 W in previous DIF)

- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

FROM 1M3 TO LARGER PROTOTYPES **GRPC CHAMBERS**

Construction and operation of large GRPC needs some improvements with respect to the 1m² used at the 1m³ SDHCAL prototype.

Gas distribution

Energy reconstruction

 $\mathbf{E}_{\text{rec}} = \alpha (N_{\text{tot}}) \mathbf{N}_1 + \beta (N_{\text{tot}}) \mathbf{N}_2 + \gamma (N_{\text{tot}}) \mathbf{N}_3$

 α , β , γ are **quadratic functions** of They are computed by minimizing :

 $\chi^2 = (E_{beam} - E_{rec})^2 / E_{beam}$

Hough-Transform

Track segments reconstruction using 3D-Hough Transform helps to apply different treatment to the hits of these segments.

N₁= Nb. of pads with first threshold <signal < second threshold N₂ = Nb. of pads with second threshold <signal < third threshold N₃ = Nb. of pads with signal> third threshold

 $N_{tot} = N_1 + N_2 + N_3$

In addition track segments will be used as in-situ calibration and monitoring tools

Chamber + Electronic tests "Standard" glass 1x1m2 chamber

Readout by: PETIROC+ external TDC Same cards as the ones developed for upgraded CMS RPC 2 PETIROC2 + FPGA Cyclone V + ethernet

At the moment 64 strips in total can be read out but can be extended on future if needed.

Some tests to be done in incoming weeks