Highly granular Si-ECAL

Adrián Irles

*AITANA group at IFIC - CSIC/UV

la Unión Europea **NextGenerationEU**

GENERALITAT

VALENCIANA

Conselleria d'Innovaci

Universitats, Ciència

i Societat Digital

ΑΙΤΔΝΑ MATTER AND TECHNOLOGY

大学

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Particle Flow Algorithms

Concept

- Base the measurement on the subsystem with best resolution for a given particle type (and energy)
- Separation of signals by charge and neutral particles in the calorimeters

IFIC

- **Maximal exploitation** of precise **tracking** measurement
 - "no" material in front of calorimeters → very low material budget for trackers
- Single particle separation

Calorimetry requirements

Ultracompactness: small Molière radius of calorimeters to minimize shower overlap

Irles A

Extreme high granularity

Full coverage

3

Particle Flow Calorimetry R&D

Mainly organised within the

More than 300 physicists/engineers from ~60 institutes and 19 countries coming from the 4 regions (Africa, America, Asia and Europe)

All projects of current and future high energy colliders propose highly granular calorimeters

Irles A.

Technological prototypes

Physics Prototype Proof of principle 2003 - 2011

Number of channels : 9720 Pixel size: 1x1 cm2 R_{M,eff}: ~ 1.5cm Weight : ~ 200 Kg Technological Prototype Engineering challenges 2010 -

Number of channels : 45360 Pixel size: 0.55x0.55 cm2 R_{M,eff}: ~ 1.5cm Weight : ~ 700 Kg

LC detector ECAL: Channels : ~100 106 Total Weight : ~130 t Towards a real detector

Irles A.

SiW-ECAL for future LC

- **Tungsten** as absorber material
 - Narrow showers
 - Assures compact design
 - Low radiation levels forseen at LC
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{mm}, I_L = 96 \text{mm}$
- Silicon as active material
 - Support compact designs
 - Allows **pixelisation**
 - Robust technology
 - Excellent signal/noise ratio

The **SiW ECAL R&D** is tailored to meet the specifications for the **ILD** ECAL **baseline** proposal

2023 International Workshop on the CepC

The SiW ECAL in the ILD Detector

SiW-ECAL for the ILD

► O(10⁴) long modules

► O(10⁵) ASUs (PCB+wafer+ASIC)

O(10⁶⁻⁷) ASICS

O(10⁸) cells

• 2000 m² of Si

▶ 130 T of tungsten

Cell size of 5x5 mm → all cells are self triggered + zero suppression

Successful application of PFA requires calorimeters to be placed insided the magnetic coil

Very compact design: Thickness of 20 cm for 20-30 active layers + 24X0 tungsten

► Very limited space for inactive material (PCB, electronic components) → No active cooling but Power Pulsing

Sensors: Silicon P-I-N diodes wafers

Designed for ILC : Low cost, ~2000 m2 Minimized number of manufacturing steps Target is 2.5 EUR/cm2 Now : ~10 EUR/cm2 (Japan)

EUDET layout *Prototype from Hamamatsu*

2023 International Workshop on the CepC

Probe-card designed by CERN for CALICE.

Switch card: designed for CMSHGCAL

Very Front End electronics

- SKIROC (Silicon Kalorimeter Integrated Read Out Chip)
- SiGe 0.35µm AMS, Size 7.5 mm x 8.7 mm, 64 channels
- High integration level (variable gain charge amp, 12-bit Wilkinson ADC, digital logic)
- Large dynamic range (~2500 MIPS), low noise (~1/10 of a MIP)
- Dual readout: high and low gain
- Auto-trigger at ~0.5 MIP
- Low Power: (25µW/ch) power pulsing switch off electronics bias currents during bunch trains

- Prototype version (Skiroc 2 and 2a) for R&D and beam tests
- Definitive version will be optimized for ILC and work in zero suppression conditions.

Ultra compact Digital Readout

Core Mother / Daughter system

Controlling /reading up to 30 Slboards

The SL-Board

the sole interface for the ~10,000 channels of a 2m slab

The new DAQ fits the tight space requirements of the ILD

<2019 **≥2019**

Irles A.

Ultra compact Digital Readout

The new DAQ fits the tight space requirements of the ILD 2023 International Workshop on the CepC

Irles A.

New generation of PCBs

IFIC A 12

- Dimensions: 180mm x 180mm
 - Thickness: 1.6mm
- New features:
 - Locally buffered clock for configuration the system
 - New connector for interconnexion
 - Add connector & HV filter for individual wafer
 - New system with individual HV kapton
 - Analog probe to check connection to pixel connectivity

Power Pulsing Mode: new philosophy

- > we limit the current through the Slab (current limiter present on the SL Board) which:
 - avoid driving high currents through the connectors and makes the current peaks local around the SKIROCs chips.
 - avoid voltage drop along the slab.
 - permits temperature uniformity
- We add large capacitors with low ESR for local energy storage (around each SKIROC chip)
- Generate local power supply with LDO (Low Drop Out) to remove voltage variations

Irles A

Sensor integration - high density channels

IFIC INSTITUT DE FÍSICA

Very dense PCBs:

 i.e. at SiW-ECAL they are known as featuring 1024 readout channels (with digital, analogue, clock signals) in a 18x18 cm² board

CMS HGCAL Hexaboard

Wire bonding from PCB to silicon through holes

SiW-ECAL current prototype solution. --> 5x5mm² cells

Sensor integration - high density channels

Wafers are glued to PCB (robot at LPNHE & Kyushu U. & IFIC 2023-2024)

Sensor polarization through HV deliver via a copper/kapton sheet

No space for wirebonding

Glue with conductive epoxys epoxy+silver mixes

Low temperature curing (40-80 degrees)

Sensor connectivity degradation

Since 2022: observation of partial delamination of several sensors

- Degradation? Mechanical stress due to PCB deformations ?
- Under investigation

Irles A.

Test Beams End 2021-2022

- 15 layers with 1024 readout cells each
 - 5.5mm si pads
 - LHC calorimeter scale
 - But it fits in a suitcase
- 2 periods at DESY for commissioning and DAQ developments
- 2 weeks at CERN

2023 International Workshop on the CepC

Irles A.

IFIC

16

Test Beams DESY 2021-2022

SiW-ECAL + AHCAL DAQ test @ DESY in March 2022

Irles A.

Common beam test CERN SPS 06/2022 IFIC

Muons (150GeV), electrons (10-100GeV) and pions (10-150GeV)

Data analysis in progress: stay tuned

The path to Large Scale prototypes

- ► Ongoing R&D phase with the goal of the construction of multilayer scale SiWECAL PF prototypes → (within the new DRD collaborations)
 - With high granularity (up to $5x5mm^2$) \rightarrow **15 new layers in construction**
 - Extreme compactness to ensure the smallest moliere radius
 - Fully implementing **power pulsing**!
 - To be tested in **beam facilities** in order to ensure a proper integration/interplay of the two sections (ECAL+HCAL) which is **crucial for PFA**
- Adaptation of the concepts to different projects
 - Lineal-vs-circular \rightarrow low or high rates \rightarrow Power pulsing or not, self trigger or not
 - e+e-vs hadron \rightarrow no strict radiation hardness requirement vs the opposite
 - First phase of simulation studies required.
- Application of new ideas
- Intermediate applications: LUXE

Irles A

Particle Flow Algorithms

Lepton Collider goal is around dE_{jet}/E_{jet} - 3-4% (e.g. 2x better than ALEPH / ATLAS)

Conventional

Example: jet created by a proton

"traditional" detector : $E = E_{ECAL} + E_{HCAL}$ Particle Flow detector: $E = E_{track}$

PFA

Technological premises

Highly integrated (very) front end electronics

e.g. SKIROC (for SiW Ecal)

Size 7.5 mm x 8.7 mm,

64 channels

- Analogue measurement
- On-chip self-triggering
- Data buffering
- Digitisation ... all within one ASIC

Large surface detectors

Si Wafer

RPC layers

- Small scinitllating tiles
- (Low noise) SiPMs

Power pulsed electronics to reduce power consumption... Compactness -> no space left for active cooling systems

Self trigger of individual cells below MIP level

Many things that look familiar to you today were/are pioneered/driven by CALICE

Readout modules

IFIC INSTITUT DE FÍSICA

Very dense PCBs aka FEV with 1024 readout channels (with digital, analogue, clock signals) in a

FEV10-12

- ASICs in BGA Package
- Incremental modifications
 - From v10 -> v12
 - Main "Working horses" since 2014

2023 International Workshop on the CepC

FEV_COB

- ASICs wirebonded in cavities
- COB = Chip-On-Board
- Current version FEV11_COB
- ▶ Thinner than FEV with BGA
- External connectivity compatible with BGA based FEV10-12

	Surface		
1	TOP Conductor	Ϋ́Ϋ́	
	Dielectric	-++	
2	C2 DVDD/GND Plane		
	Dielectric		
3	C3 S N Conductor		Ϋ́
	Dielectric		+
4	C4 GND Plane		\downarrow —
	Dielectric		
5	C5 S N Conductor	Y	¥
	Dielectric	ł	+
6	C6 AVDD Plane		\downarrow
	Dielectric		
7	C7 S N Conductor	ĭ	Ť
	Dielectric	ł	Y
8	C8 GND Plane		\downarrow \Box
	Dielectric		
9	C9 AVDD_PA Plane	ĭ	Ť
	Dielectric	ł	ł
10	C10 S A Conductor		↓_ľ
	Dielectric		Y
11	C11 AVDD_PA Plane	ĭ	¥Y
	Dielectric	ł	¥.
12	BOTTOM Conductor	Ļ	
	Surface		

Irles A.

The FEV zoo (from 2014)

Very dense PCBs aka FEV with 1024 readout channels (with digital, analogue, clock signals) in a

FEV10-12

Validation of the technology concept "culminated" in 2017-18 with a series of test beams

NIMA 2019 162969

- ASICs in BGA Package
- Incremental modifications
 - From v10 -> v12
 - Main "Working horses" since 2014

Ultra thin PCBs

PCB with naked die placed in carved cavities and wirebonded to the board

- Very thin board ~1.2mm (ILD requires 1.8mm for board and comp.)
 - 10 layers (+ gnd cupper layer)
 - To be compared with 2.8-3mm of the FEV10-13
 - but they include BGA SKIROCs and extra components as decoupling capacitances...!!

2023 International Workshop on the CepC

Zoom into ASIC cavities

Before application of epoxy

After application of epoxy

FEV11_COB – Some Technical Details

Irles A.

Electrical prototype of Long Slab

- Daisy chain of 8 ASU (extendable to 12)
- Corresponding to typical barrel length
 - 2m long !
- Electrical, electronic and mechanical challenges
 - Power delivery through the full length
 - Very long signal, control, clock lines
 - Very thin and long modules... wit silicon wafers glued in the back

GSigm

Width2

AngleCo Errentre 885 ± 0.023

11.16 ± 1.76 140.4 ± 1.7 5210-04 ± 2.4750-07

57.83 ± 0.10

DESY@2018

Ultra compact DAQ

Core Mother / Daughter system

• Controlling /reading up to 30 Slboards

The SL-Board

• the sole interface for the ~10,000 channels of a 2m slab

IFIC

29

Contractional Workshop on the CepC

Technological prototype: time travel

2010-2015

60