Status and plans for the IDEA dual-readout fibre calorimetry

Roberto Ferrari INFN Pavia

CEPC 2023 Workshop Nanjing, October 26, 2023

Istituto Nazionale di Fisica Nucleare Sezione di Pavia

1. Dual-readout calorimetry

2. IDEA dual-readout fibre calorimetry

3. Hadronic-containment prototype

4. Exploit timing & DNNs

Dual-readout calorimetry

hadron calorimetry

hadronic component: p, n, π^{\pm} , nuclear fission, ... delayed photons, ... invisible energy

- Large non-gaussian fluctuations in *em/non-em* energy sharing
- Increase of *em* component with energy
- Large, non-gaussian fluctuations in "invisible" energy losses

Response: detected signal per unit energy deposit

e.g. number of scintillating (or Cherenkov) p.e. / deposited GeV

Hadronic showers:

em component \rightarrow response e hadronic component \rightarrow response h

e/h: detector characteristic, typically > 1

Dual-readout calorimetry: two sampling processes \rightarrow compensate for e/h dependence

dual-readout algebra

 $S = E \times [f_{em} + S \times (1 - f_{em})]$ $\mathbf{C} = \mathbf{E} \times \left[\mathbf{f}_{em} + \mathbf{C} \times (1 - \mathbf{f}_{em}) \right]$

f_{em} = electromagnetic shower fraction $s = (h/e)_s$, $c = (h/e)_c$: detector-specific constants

by solving the system, both E and f_{em} can be reconstructed

E measured at em energy scale

applying dual-readout formulae

 $(1-f_{em})$ can be reconstructed within (unknown) constant factor (>) O(1)

$$> \left(\frac{h}{e}\right)_{c} \Rightarrow \chi < 1$$

χ measurable if E known — $\rightarrow \chi$ can be extracted from testbeam data

applying dual-readout formulae

$$\cot g\,\theta = \, \frac{1-(h/e)_S}{1-(h/e)_C} = \chi$$

IDEA dual-readout fibre calorimetry

IDEA: Innovative Detector for e+e- Accelerators

IDEA baseline concept

Muon chambers µ-RWELL in return yoke Dual-readout calorimetry 2 m / 7 λ_{int} + µ-RWELL preshower Thin superconducting solenoid 2 T, 30 cm, ~ 0.7 X_0 , 0.16 λ_{int} @ 90° Highly transparent for tracking Si pixel vertex detector Drift Chamber Si wrappers (strips)

Beam pipe: r ~ 1.5 cm

Three main activity pillars:

- 1. Europa: INFN, Sussex University \rightarrow mainly (but not only) fibre-sampling calorimetry
- 2. Korea \rightarrow projective fibre-sampling calorimetry
- 3. U.S. (Calvision project) \rightarrow mainly (but not only) crystal em calorimetry

IDEA all-fibre DR calorimeter option

 DR fibre calorimeter ✤ O(100 M) fibres + 1 mm ø, 1.5 mm pitch copper absorber ✤ 75 projective towers × 36 slices \bullet $\Delta \vartheta = 1.125^{\circ}, \Delta \varphi = 10.0^{\circ}$ ϑ coverage: $|\vartheta| > 100$ mrad

G4 simulation available tuned to RD52 TB data

- Gaussian resolution
- Adequate separation of W / Z / H

IDEA 2020 em-size bucatini prototype (EU)

Nine ~3.5×3.3 cm² towers made of capillary brass tubes

Central tower (360 fibres) w/ highly granular SiPM readout

Eight (surrounding) towers read out with PMTs

Scintillation fibers

Cherenkov fibers

2021 testbeam

Test 2021 (CERN+DESY):

Verified strong dependence of response on impact angle Very poor positron-beam purity in SPS H8 line only allowed limited testing

Electron resolution from JINST 18 (2023) 09, P09021 Dual readout TB2021 MC Angle V/H=2.5°: $\sigma(E)/E = 14.5\%/\sqrt{E}+0.1\%$ MC TB: $\sigma(E)/E = 16.4\%/\sqrt{E+0.1\%}$ Data TB: $\sigma(E)/E = 17.5 \pm 2.2\%/\sqrt{E} + -0.1 \pm 0.5\%$ 0.15 0.2 0.25 0.3 0.35 1/VE [GeV-1/2]

Testbeam results

JINST 18 (2023) 09, P09021

Energy well reconstructed within 1%

Additional data taken in 2023: analysis ongoing

Lateral shower profile compared to G4 simulation \rightarrow unprecedented resolution \leftarrow

Hadronic-containment prototype

HiDRa – Highly granular Dual-Readout demonstrator (INFN)

Assess physics performance for both single hadrons and jets (and electrons)

Validate Geant4 shower modelling

Assess scalable solutions concerning construction and signal readout/handling

Exploit DNN architectures for physics analysis

Assess performance in relevant benchmark physics channels

→ Fully exploit D-R potential for physics programme at EWK/Higgs factories

HiDRa Geant4 simulations

χ2 / ndof

Fit from 0 to 10 * *E* [GeV]

Calorimeter depth

Pion resolution in [10, 100] GeV Range

Low-energy tails

construction and QA/QC

Minimodule 0

SiPMs for HiDRa

New solution by Hamamatsu:

boards with 8 "in-line" SiPMs dimension 1×1 mm² 10 or 15 µm cell size SiPMs selected such that $\Delta V_{bd} < 100 \text{ mV}$

Actual choice:

a) 10 µm cells for scintillating fibres b) 15 µm cells for clear fibres

Testing 10 boards per cell-size type

8x Effective photosensitive area (ϕ 1.0)

Alternative to SiPMs?

- SPAD array in CMOS:
- complex functions embedded in single substrate (e.g. SPAD masking, counting, TDCs)
- front-end electronics optimised to preserve signal integrity (\rightarrow timing)
- simplified assembly of large area detectors
- R&D costs relatively low for design over standard process

digital SiPMs (dSiPMs)

no need for analogue-signal post-processing

exploit timing & DNNs

Testbeam module (brass absorber): dimensions: 133.2×133.2×250 cm³ Reduced granularity (1.2×1.2 cm², 32 S & 32 C fibres): 111×111 modules Simulation of both detector and SiPM response Feature extraction: E(Q), Pk, ToP, ToA, ToT \rightarrow each event represented by 111×111×5×2 tensor

NN implementation

Two DNN architecture variants studied:

- VGG-11 like (VGG = Visual Geometry Group, Oxford Un.)
- Dynamic Graph CNN (DGCNN)

6 event classis (covering ~ 90% of τ decays) Training set: 6 BR × 2000 evts

VGG example

NN performance

Confusion matrix on test set

average accuracy: 97.3% τ →ππ⁰ν **100%** τ →ππ⁰ν **100%** 95% 2% 3% τ →evv τ →evv Truth BR Truth BR $\tau \rightarrow \mu \nu \nu$ 100% $\tau \rightarrow \mu \nu \nu$ 91% $\tau \rightarrow \pi v$ 6% 3% τ →πν τ →πππν 98% 2% τ →πππν $\tau \rightarrow \pi \pi^0 \pi^0 \nu$ $\tau \rightarrow \pi \pi^0 \pi^0 \nu$ 100% THRONG HAN THE THRONO Predicted BR

VGG-11

Predicted BR

No SiPM response simulation

 \rightarrow information: fibre signal output (# p.e.)

3-class classification: $\tau_{lep}, \tau_{had}, QCD$ jet

8-class classification: τ₀, τ₁, τ₂, τ₃, τ₄, τ₅, τ₆, QCD jet

[τ from Z $\rightarrow \tau\tau$ decays]

3-class label	8-class label	
0	0	$\tau \rightarrow \mu \nu \nu$
0	1	$\tau \rightarrow evv$
1	2	$\tau \rightarrow \pi v$
1	3	$\tau \rightarrow \pi \pi^0 \nu$
1	4	$\tau \rightarrow \pi \pi^0 \pi^0 \nu$
1	5	$\tau \rightarrow \pi \pi \pi \nu$
1	6	$\tau \rightarrow \pi \pi \pi^0 v$
2	7	$Z \rightarrow qq$ jets

DGCNN w/ geometrical information only

DGCNN optimised but w/o #pe as input feature B field and material in

avg accuracy: 73.7%

6.95	0.79	0.62	0.03	0.00	0.00	1.58	0.03	
3.09	89.03	3.48	0.41	2.02	0.39	1.44	0.14	
1.77	4.83	80.45	9.25	1.61	1.67	0.16	0.25	
0.30	0.38	10.43	84.55	0.16	3.87	0.05	0.25	
0.16	3.52	1.38	0.35	84.82	8.79	0.03	0.95	
0.11	0.24	1.98	2.60	10.19	82.60	0.08	2.20	
2.53	0.48	0.11	0.00	0.03	0.00	96.82	0.03	
0.08	0.25	0.19	1.05	2.54	4.08	0.06	91.75	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 1					<b>~</b>	~ <u>~</u>	<b>Դ</b>
-2	2 1		02	1010			52	10. 10,
Predicted BR								

input: fibre coordinates + type
avg accuracy: 88.3% (w/ #p.e. 90.8%)

## longitudinal segmentation w/ timing (U.S.)

Dual-readout fibre calorimeter  $\rightarrow$  signal sampled at 20 GHz

Cu absorber (2 m deep)

Fibre axis aligned w/ beam direction: 1 mm Φ fibres, 1.5 mm spacing

Transverse segmentation: 1×1 cm² for 2D analysis, 3×3 cm² for 3D analysis



#### 3D imaging fibre DR calorimeter coupled to Graph DNN

#### Preliminary results No optimisation

## longitudinal segmentation w/ timing (U.S.)



Table 1. The energy resolution of the 3D GNN reconstruction with various timing resolutions for longitudinal segmentation.

Timing Resolution $\Delta(t)$ , ps	Position Resolution $\Delta(z)$ , cm	Energy Resolution @ 100 GeV $\sigma/E$ , %
0	0.0	3.6
100	5.0	^{3.9} only Charankov fibras
150	7.5	4.0 Unly Cherenkov hbres
200	10.0	4.2

## longitudinal segmentation w/ timing (Korea)

Full SiPM signal sampled at 10 GHz

FFT used to mitigate exponential tail

Unlocks full longitudinal information about energy deposit

Combined with DR information allows in-shower cluster identification





### waveform digitisation (U.S.)

Results with SensL (MicroFC-30020SMT): SiPM with both fast and standard outputs



**One-photon event** 

Two-photon event (simultaneous)

Two-photon event (5 ns apart)

#### **NALU Scientific** AARDVARC v3

- Sampling rate 10-14 GS/s
- 12 bits ADC
- 4-8 ps timing resolution
- 32 k sampling buffer
- 2 GHz bandwidth
- System-on-Chip (CPU)



Dual-readout calorimetry excellent candidate for physics programme at EWK factories  $\rightarrow$  growing interest for CEPC/FCC-ee detectors

IDEA fibre calorimeter: dual-readout + single-fibre light sensors (SiPM) + timing  $\rightarrow$  highly granular 3D information

- $\rightarrow$  powerful input for deep-learning algorithms and/or PFA  $\rightarrow$  highly performing final-state identification capabilities

Many R&D activities ongoing exploiting all directions  $\rightarrow$  including different readout options (both charge-integrator and waveform sampling ASICs)

Hadronic-scale demonstrator(s) under construction

Crystal option (IDEA++)  $\rightarrow$  boost em performance & do not spoil hadronic one  $\rightarrow$  look at Marco Lucchini's talk

## Backup

Investigating:

- Absorber production and assembly procedure
- Fibre types (round, square, single/double cladding)
- Light sensors (PMTs, MCP-PMTs, SiPMs)

Absorber production:

- 3D printing  $\rightarrow$  excellent accuracy but pretty expensive
- Stacking (LEGO-like)  $\rightarrow$  good accuracy and quite cheap
- Skiving Fin Heat Sinks  $\rightarrow$  high accuracy and low cost

### 2025: full-size projective prototype



1/2 modules: 11 (Opt2)

### 2022 Korean-prototype beam test



Data analysis in progress  $\blacklozenge$ 





Tower#1	Tower#2	Tower#3	
Tower#4	Tower#6	Tower#6	
Tower#7	Tower#8	Tower#9	

#### **Dimensions:**

- External diameter: 2 ( $\pm$  0.050) mm  $\leftarrow$  from SiPM dimensions
- Internal diameter: 1.1 (-0 +0.1) mm  $\leftarrow$  from fibre dimensions
- Length: 2.5 m  $\leftarrow$  from containment studies

#### $\rightarrow$ 3% sampling fraction

- Material:
  - Stainless steel 304  $\leftarrow$  cheaper than brass, comparable performance