Valerio Sarritzu* on behalf of the **ALICE** collaboration *CERN, UniCA, INFN

The ALICE Inner Tracking System Upgrade CEPC 2023, Nanjing, 23 Oct 2023

The ALICE ITS Upgrade Outline

• Overview

- Motivation
- Concept

Sensor R&D

- Wafer-scale stitched sensors
- Milestones

Monolithic Stitched Sensor (MOSS) prototype

- Design and features
- Testing

Overview The ALICE Inner Tracking System

ITS₂

- Largest MAPS detector ever built
 - 7 layers
 - 10 m²
 - 12.5 Gpixel
- Installed in 2021

Overview The ALICE Inner Tracking System

Valerio Sarritzu

ITS₃

- **Goal: improve** tracking performance by replacing **Inner Barrel**
- To be installed during LHC LS3 (2025-27)

ITS2 half inner barrel

ITS2 inner barrel stave

Three layers of staves. State-of-the-art, but:

- **Can the material be further reduced?**
- 2. Can we get closer to the interaction point?

1. Can the material be further reduced?

1. Can the material be further reduced?

1. Can the material be further reduced?

Si () is only 1/7th of total material

1. Can the material be further reduced?

- Si (
) is only 1/7th of total material
- Irregularities due to support/cooling and staves overlapping

1. Can the material be further reduced?

1. Can the material be further reduced?

Wishlist:

1. Can the material be further reduced?

Wishlist:

- **Removal of water cooling**
 - Needs drastic reduction in power consumption ullet

1. Can the material be further reduced?

Wishlist:

- Removal of water cooling
 - Needs drastic reduction in power consumption ullet

Removal of the circuit board

Needs power+data integrated on chip \bullet

1. Can the material be further reduced?

Wishlist:

- Removal of water cooling
 - Needs drastic reduction in power consumption ullet
- Removal of the circuit board
 - Needs power+data integrated on chip \bullet
- **Removal of mechanical support**
 - Needs self-supporting arched Si wafers ullet

Overview Concept

ITS2 half Inner Barrel

Carbon foam

Getting closer to the ideal detector: real halfcylinders of bent, thin silicon

ter radius (mm)	16.0/16.5			
	Layer 0	Layer 1	Layer 2	
	18	24	30	
ions (mm²)	270 x 56	270 x 74	270 x 93	
sors	2			
		= -0(20 x 2)		
		>		
			T	

ITS3 Engineering Model 1

improvement of factor 2 over all momenta

e.g. Ac S/B improves by factor 10, significations by factor 4

Carbon foam

Getting closer to the ideal detector: real halfcylinders of bent, thin silicon

er radius (mm)	16.0/16.5			
	Layer 0	Layer 1	Layer 2	
	18	24	30	
ions (mm²)	270 x 56	270 x 74	270 x 93	
sors		2	·	
		O(20 x 20)		
			-	

ITS3 Engineering Model 1

1. Can the material be further reduced?

• Real half-cylinders of bent, thin silicon

- **1.** Can the material be further reduced?
 - Real half-cylinders of bent, thin silicon

2. Can we get closer to the interaction point?

- **1.** Can the material be further reduced?
 - Real half-cylinders of bent, thin silicon

2. Can we get closer to the interaction point?

- Thinner beam pipe (radius: $18.2 \rightarrow 16.0$ mm)
- Layer 0 closer to IP (22.4–26.7 \rightarrow 18.0 mm)

	Radius (mm)	Sensor size (mm ²)
Layer 0	18	266 x 55
Layer 1	24	266 x 74
Layer 2	30	266 x 93

How do we get there?

Sensor R&D

- 5 μ m resolution (pixel size O(20x20 μ m²))
- 1×10¹³ 1 MeV n_{eq} cm⁻² (NIEL)

Electro-mechanical integration

More in

backup

slides!

- Silicon bending
- Carbon foam properties \bullet
- Sensor cooling \bullet
- Interconnection \bullet

ø = 300 mm (12") silicon wafer

Sensor R&D

Wafer-scale stitched sensors

Three main ingredients:

- 1. 65 nm technology by TPSCov*
 - ➤ Lower power, tighter integration
 - → <u>300 mm wafers</u>

* Tower Partners Semiconductor Co.

Ø = 300 mm (12") silicon wafer

Three main ingredients:

- 1. 65 nm technology by TPSCov*
 - ➤ Lower power, tighter integration
 - ➤ <u>300 mm wafers</u>

* Tower Partners Semiconductor Co.

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Three main ingredients:

- 1. 65 nm technology by TPSCo^{*}
 - ➤ Lower power, tighter integration
 - → <u>300 mm wafers</u>

* Tower Partners Semiconductor Co.

Ø = 300 mm (12") silicon wafer

Two main steps:

 \emptyset = 300 mm (12") silicon wafer

- Two main steps:
- Lithography

Lithographic mask

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

Left endcap (a challenging design on its own!) 1.

Lithographic mask

UV

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

- Left endcap (a challenging design on its own!) 1.
- 2. Repeated sensor units

UV

Lithographic mask

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

- Left endcap (a challenging design on its own!) 1.
- 2. Repeated **sensor units**

Lithographic mask

L

 \emptyset = 300 mm (12") silicon wafer

Two main steps:

Lithography

- Left **endcap** (a challenging design on its own!) 1.
- 2. Repeated **sensor units**
- 3. Right endcap

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

- Left **endcap** (a challenging design on its own!) 1.
- 2. Repeated **sensor units**
- 3. Right endcap

Lithographic mask

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

- Left **endcap** (a challenging design on its own!) 1.
- 2. Repeated sensor units
- 3. Right endcap

2. Stitching used to connect metal traces

Stitched backbone RSUs now in contact with endcaps

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

- Left endcap (a challenging design on its own!)
- 2. Repeated **sensor units**
- 3. Right endcap

2. Stitching used to connect metal traces

- power distribution
- buses for control and data readout

Stitched backbone RSUs now in contact with endcaps

Power+data carried across 27 cm!

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Two main steps:

Lithography

- Left endcap (a challenging design on its own!)
- 2. Repeated **sensor units**
- 3. Right endcap

2. Stitching used to connect metal traces

- power distribution
- buses for control and data readout

Power+data carried across 27 cm!

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

Three main ingredients:

- 1. 65 nm technology by **TPSCo***
 - ➤ Lower power, tighter integration
 - → <u>300 mm wafers</u>
- 2. Stitching used to connect metal traces
 - power distribution
 - buses for control and data readout

* Tower Partners Semiconductor Co.

 $\emptyset = 300 \text{ mm} (12") \text{ silicon wafer}$

92,58

Three main ingredients:

- 1. 65 nm technology by TPSCo*
 - ➤ Lower power, tighter integration
 - → <u>300 mm wafers</u>
- 2. Stitching used to connect metal traces
 - power distribution
 - buses for control and data readout \bullet

3. Bending (Si thinned <50 μ m)

* Tower Partners Semiconductor Co.

Three main ingredients:

- 1. 65 nm te 1st plotter **TPSCo*** Lower power tighter integration
 - → <u>300 mm wafers</u>
- d thepinnect metal 2. Stitching traces
 - power distribution
 - buses for control and data readout

92,58

Sensor R&D Milestones

Multi-Layer Reticle 1

First submission in TPSCo 65 nm:

- Goal: qualify the technology (achieved)

- Goal: assess yield (ongoing)

Sensor R&D Multi-Layer Reticle 1: first 65 nm prototypes

Digital Pixel Test Structure

async. digital with ToT

Lots of (small) prototypes to explore the technology for particle detection

Sensor R&D **Multi-Layer Reticle 1: APTS**

• Pixels of pitches of 10–25 µm show similar results

- charge collection is very efficient
- We can *choose* the optimal pitch for the final sensor

	0 0035 -	
	0.0055	ALICE
e_)	0.0030-	Plotted
oer 20	0.0025	
incy (p	0.0020-	
freque	0.0015	
ative 1	0.0010-	
Rel	0.0005 -	
	0.0000) 2

Pitch = $10 \ \mu m$

Sensor R&D **Multi-Layer Reticle 1: DPTS**

Sensor R&D **Engineering Run 1**

Designing the first wafer-scale MAPS detector for high-energy physics

- Two large stitched sensors:
 - MOSS (14 x 259 mm²) •
 - **MOST** (2.5 x 259 mm²)
- Both with digital readout, but different approaches

Sensor R&D **Engineering Run 1**

Designing the first wafer-scale MAPS detector for high-energy physics

- Two large stitched sensors:
 - MOSS (14 x 259 mm²) ullet
 - **MOST** (2.5 x 259 mm²)
- Both with digital readout, but different approaches

Sensor R&D **Engineering Run 1**

Designing the first wafer-scale MAPS detector for high-energy physics*

- Dedicated design effort:
 - Understanding of "stitching" rules
 - Incorporation of **redundancy**, **fault tolerance**
- Crucial exercise to understand:
 - **Yield:** input for granularity of power segmentation
 - Uniformity
 - **Power distribution and consumption**
 - **Readout over long distances** (26 cm!)
 - **Pixel architecture** (targets: ~5 μ m resolution, 10¹³ 1 MeV n_{eq} cm⁻² (NIEL)

* But not yet the sensor for ITS3

ER1 wafer ($\emptyset = 300 \text{ mm}$)

MOSS

Stitched backbone

- CMOS signalling with regeneration across 26 cm

Endcaps

- Challenging design on their own!
- Left endcap:
 - Up to 160 Mbps reading one sensor at a time (4-bit bus) Up to 40 Mbps / sensor reading all sensors at once (10x 1-bit buses) Intermediate design: target is 5-10 Gb/s for the final sensor
- **Right endcap**: power supply only
- Not for free: to be accounted for in power budget

Capable of addressing the 10 sensors simultaneously from left endcap

MOSS **Test system requirements & challenges**

Main goals:

- Test all features of the chip
- Assess manufacturing yield
- Assess functional yield at half unit, region, column/row/pixel level granularity

Main challenge: huge chip!

- 259x14 mm²
- 6.72 megapixels
- **2800** pads
- 9 power nets per HU
- 67 power domains
- Delicate, needs **mechanical support** in many use cases

MOSS From wafer to carrier

MOSS

MOSS From wafer to carrier

Tools (and expertise!) developed by the ITS collaboration

MOSS **Carrier card**

MOSS Carrier card ↔ sensor long edge

MOSS Carrier card ↔ sensor <u>short edge</u>

MOSS Test system

Three different types of board:

- Carrier card
- 5x proximity cards
 - 1 card x 4 quadrants
 - 1 top/bottom halves

5x FPGA-based automation and readout modules

MOSS **Testing campaign**

Extensive testing program ongoing:

- Impedance between power nets: shorts?
- **Power ramps**: how do we power the sensor?
- **Register scan:** reset value check, read/write
- **DAC scan**: linearity
- Pulsing (digital, analog)
- **Fe55**
- **Beam test**

24x6 sensors to test: stay tuned!

MOSS test system

ALPIDE+MOSS telescope

MOSS **Preliminary results**

- 16 MOSS successfully wire-bonded
- No failures so far
 - 40 HUs tested from long edge up to register/DAC scan and fully functional
- First correlations from beam test in Jul/Aug/Sep!

60

Summary & Outlook (and thanks for your attention)

ITS3 upgrade: a breakthrough cylindrical inner tracker

Three key innovations

- 65 nm: low power & 300 mm wafers (validated)
- **Stitching**: first wafer-scale MAPS sensors for HEP
- Thinning and **bending**
- **ER1** (now testing!): first stitched sensors
 - Goal: asses the yield of wafer-scale stitched sensors
 - Testing started with **promising results**

Next steps

- Full characterisation of MOSS & MOST (yield, pixel performance...)
- **ER2** (prototype of the final sensor, 2024) and **ER3** (final ASIC, 2025)

Backup

MOST

- - loss)

To off-chip decoding

ITS3 R&D - Silicon bending

change after bending

- change when sensor is bent
- Efficiency above 99.9% at a threshold of 100 e-

» Laboratory and test beam measurements (Jun 2020) allow to conclude that chip (180 nm CMOS) performance doesn't

Pixel matrix threshold distribution does not

ITS3 R&D - Interconnection

» Flexible printed circuits for communication and powering

- placed outside the sensible area
- three double copper layers flex, multi-strip shaped (15-30 cm long), connected in a merging area
- interconnected via wire-bonding at the edge of the sensor verified
- wire-bonds loops optimisation based on pull-force measurements -
- present setup (not final grade material): 6.6±0.3 g at ~900 µm pad-to-pad distance

MOSS Power distribution

Powering & monitoring from the short-edge (example for VDD)

	VDD10 x24	<u>x24</u>	VDD1	
	VDD9 x2	x2	VDD10	
	VDD8 x2	x2	VDD9	
	VDD7 x2 VDD6 x2	x2 x2	VDD8	
	VDD5 x2	x2	VDD6	
	VDD3 x2	x2	VDD4	
	VDD2 x2	X2	VDD3	
F	VDD1 x24	<u>x24</u>	VDD2	
	LEC	RSU1		

With the same physical RSU, it is necessary to forward power from the short edges to the most far RSUs

We achieve this by performing *line-hopping*

For the MOSS prototype, the current metal stack only allows to power the most left (RSU1) or most right RSU (RSU10). All the other power pads are only used for *monitoring* in order to verify the stitching. More on the backup slides.

Credits:

MOSS Prototype

Pedro.Leitao@cern.ch

18

Slide credits: Jordan Lang

Valerio Sarritzu

5

