LHCb Velo and UT Xuhao Yuan (IHEP) On behalf of LHCb collaboration 2023-10-23

International Workshop on The High Energy Circular Electron Positron Collider

Main physics goal

To study b & c sectors on CPV, rare decays, new physics...

$$\begin{split} &\Delta p/p = 0.5\% \ @ < 20 \ {\rm GeV}/c, 1\% \ @ < 200 \ {\rm GeV}/c \\ & {\rm IP\ resolution} \sim 15 \ + \ 29/p_T \ [{\rm GeV}/c] \ \mu m \\ & {\rm Decay\ time\ resolution\ 45\ fs\ } (B_s \rightarrow J/\psi\phi) \\ & {\rm Kaon\ ID\ \sim\ 95\%\ for\ 5\%\ } \pi \rightarrow K\ {\rm mis-ID\ probability} \\ & {\rm Xuhao\ Yuan,\ IHEP} \end{split}$$

LHCb physics performance in Run 1 & 2

A decade of important discoveries and precision measurements (9 fb⁻¹ pp data by end of 2018)

More details in Yin's talk by Thu.

 \mathcal{L}_{max} ~1.5x10³⁴ cm⁻²s⁻¹

Some smaller detector

in LS3 (2026) ⇐ U1b

 \mathcal{L}_{int} ~300 fb⁻¹

LHCb upgrades

Velo & UT @ Upgrade I (U I) (2019 - 2023)
 Velo & UT @ Upgrade II (U II) (2032 -)

Upgrade I: a brand new detector

New hybrid pixel detector

- c/b hadrons: flight ~mm before decay distinctive feature to select them
- Silicon pixels (55x55 μm)
 single hit resolution 12-15 μm

≻ Closer to beam (5 mm → 3 mm) ⇒ better σ_{IP} (2x better @ $p_T \sim 0.5$ GeV)

RF foil (185 µm thickness)

- RF foil \succ Separate VELO from primary vacuum
 - An vacuum incident on 2023 Jan 10
 - RF foils deformed
 - No damage on sensors
 - \Box Cant fully close (3 mm \rightarrow 24.5 mm x2)
 - □ Replace during YETS 2023

Upstream Tracker (UT)

UT: Si Strip detector

High coverage, segmentation, resolution

LHCB-TDR-015

Speed up tracks reconstruction & reduce P_{GhostTrk}

Different sensors for different regions

- A type: p-in-n; 98x98 mm; strip pitch 190 μm
- B type: n-in-p; 98x98 mm; strip pitch 95 μm
- C/D type: n-in-p; 98x49 mm; strip pitch 95 μm

Maximum occupancy ~ 1%

Installation ends by 2023 March Commissioning ongoing

Physics performance @ LHCb U I

Mass resolution compatible with MC expectations within 1 MeV

Xuhao Yuan, IHEP

3800

LHCD

3600

 $M(\mu^{-}\mu^{+})$ [MeV/ c^{2}]

 $\sqrt{s_{\rm NN}} = 113 \text{ GeV } p \text{ Ar}$

 $N_{J/\psi} = 443 \pm 26$

 $-J/\psi \rightarrow \mu^{-}\mu^{+}$

--- Background

3400

- Data

— Fit

3200

LHCb upgrades

Velo & UT @ Upgrade I (U I) (2019 - 2023)
 Velo & UT @ Upgrade II (U II) (2032 -)

High pile-up in Upgrade II

- VELO forward

VELO spacial Resolution

Run 3 PV distance

← VELO acceptance

In Upgrade II \mathcal{L}_{max} ~1.5x10³⁴ cm⁻²s⁻¹ \mathcal{L}_{int} ~300 fb⁻¹

- ~ 40 visible interactions/Xing
- High pile-up induces PV spatial separation of the same order as VELO resolution \rightarrow PV unresolvable
- \succ Ensure $\varepsilon_{trigger}$ at high pileup condition

VELO: 4D detector with timing

mm

4.5

3.5

3

 σ_t (Track)=20 ps restores the performance to U1 level

Velo R&D

Balance btw Φ_{eq} and σ_{Hit}

- $\succ \sigma_{\rm IP} = \sigma_{\rm extrap} + \sigma_{\rm scatter}$
- Two different layouts optimized

Sensor R&D, candidates: 3D pixel, Planar, LGAD, CMOS ...

- timing ~50 ps
- Radiation hardness (max ~6x10¹⁶n_{eq}/cm²)
- R&D on 28 nm technology: PicoPix, IGNITE
- □ Replaceable modules, thinner or no RF foil, robust 3D printed Ti cooling substrate...

Upgrade II UT (U2UT)

Channel occupancy [%]

0.42	0.45	0.47	0.49	0.52	0.54	0.57	0.60	0.60
0.46	0.49	0.52	0.56	0.59	0.63	0.68	0.74	0.77
0.53	0.58	0.62	0.68	0.73	0.83	0.89	1.00	1.06
0.64	0.70	0.77	0.86	0.96	1.10	1.26	1.48	1.63
0.78	0.88	0.97	1.13	1.27	1.54	1.81	2.34	2.72
0.96	1.10	1.23	1.45	1.68	2.05	2.63	2.84	3.87
1.28	1.45	1.54	1.81	2.04	2.57	3.42	4.48	3.95 5.13

Current UT optimized for $\mathcal{L}_{Run 3\&4}$ Upgrade II luminosity $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (\mathbf{x7.5} \mathcal{L}_{Run 3\&4})$ > The occupancy (max ~10%) will compromise the performance > Radiation does ($3 \times 10^{15} n_{eq}/\text{cm}^2$) too high for current sensor

U2UT:

CMOS MAPS technique applied

Very promising and cost effective for large area pixel detectors.

Beam pipe

2023/10/23

U2UT R&D status

U2UT software

- Preliminary studies on
 - \Box Track efficiency for $B^- \to D^0 K^-$, $D^0 \to K_s \pi^+ \pi^-$, $K_s \to \pi^+ \pi^-$ Optimizing U2UT coverage
 - Detector simulation mostly done and R.L. calculated

LHCb China group lead HVCMOS-based development

- Extensive tests using ATLASPix: lab test with cosmic ray and radioactive sources, testeam at DESY & CSNS @ 2022
- Search for domestic foundry ongoing

Also can see Shugi + Zhiyu's posters

Key observables in flavor physics

Observable	Current LHCb		Upgr	Upgrade II		
	(up to	$9{\rm fb}^{-1}$)	$(23{\rm fb}^{-1})$	$(50 {\rm fb}^{-1})$	$(300{\rm fb}^{-1})$	/
CKM tests						
$\gamma \ (B \to DK, \ etc.)$	4°	[9, 10]	1.5°	1°	0.35°	
$\phi_s \ (B^0_s o J/\psi \phi)$	$32\mathrm{mrac}$	d [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$	
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6%	[29, 30]	3%	2%	1%	
$a^d_{ m sl}~(B^0 ightarrow D^- \mu^+ u_\mu)$	36×10^{-5}	$^{-4}$ [34]	8×10^{-4}	$5 imes 10^{-4}$	2×10^{-4}	
$a_{ m sl}^s \ (B_s^0 o D_s^- \mu^+ u_\mu)$	33×10^{-1}	$^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$	
Charm						
$\Delta A_{CP} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$	29×10^{-1}	$^{-5}$ [5]	$13 imes 10^{-5}$	8×10^{-5}	$3.3 imes 10^{-5}$	
$A_{\Gamma} (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	11×10^{-1}	$^{-5}$ [38]	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}	
$\Delta x \ (D^0 \to K_{\rm s}^0 \pi^+ \pi^-)$	18×10^{-1}	$^{-5}[37]$	$6.3 imes 10^{-5}$	4.1×10^{-5}	1.6×10^{-5}	
Rare Decays						
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	⁻) 69%	[40, 41]	41%	27%	11%	
$S_{\mu\mu} \ (B^0_s ightarrow \mu^+\mu^-)$	_		_		0.2	
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016	
$A_{\rm T}^{\rm fm}~(B^0 \to K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016	Г
$\mathcal{A}_{\phi\gamma}^{\bar{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083	0.033	
$S_{\phi\gamma}^{++}(B^0_s \to \phi\gamma)$	0.32	[51]	0.093	0.062	0.025	
$\alpha_{\gamma}(\Lambda_{b}^{0} \to \Lambda \gamma)$	+0.17 -0.29	[53]	0.148	0.097	0.038	
Lepton Universality Tests	0.20					
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007	
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	[61]	0.034	0.022	0.009	
$R(D^*) \ (B^0 \to D^{*-} \ell^+ \nu_\ell)$	0.026	[62, 64]	0.007	0.005	0.002	
						TI

LHCC-2021-012

Upgrade II will fully realize the flavor physics potential of the HL-LHC

Further pursue a broad physics programme

- Spectroscopy
- High precision EW and Higgs
- Dark sector
- Exotic search
- Heavy ions and fixed target
- Success of the physics programme relies on
 ➢ HL-LHC providing LHCb ~ 50 fb⁻¹/year during Run 5&6
- A detector with similar or better performance as the present one for Run 3

THCb Velo & UT

- Upgrade I: installation completed
- Upgrade II: starts in LS4, R&D now
- LHCb Upgrade II to fully exploit HL-LHC for flavor physics and beyond
- FTDR approved and now in R&D phase
 - Next: TDR @2026, construction, installation and eventually operation for physics
- > LHCb China groups contribute more significantly in **UT** & CALO, and you are welcome to join More physical results can be expected from LHCb

ies in flavour physics, and beyond, in the HL-LHC era

eywords: LHC, HL-LHC, HiLumi LHC, LHCb, https://indico.cern.ch/event/400665

- Expression of Interest, LHCC-2017-003
- Physics case, LHCC-2018-027
- Accelerator study, CERN-ACC-2018-038 \geq
- Framework TDR, CERN-LHCC-2021-012

Thank you for your attentions

2018-08-29