

Status of the Silicon Tracker Project

Collaboration between China, Germany, Italy, UK

CEPC tracker designs: TPC or DCH + Si

Baseline tracker design: TPC

and 3 layers / 5 disks of silicon sensors,

 50 m^2 (32 w/o FTD) if huilt in CMOS nivels (string default)

Detector		Radius	s <i>R</i> [mm]	$\pm z$ [mm]	Material budget $[X_0]$				
SIT	Layer 1		153	371.3	0.65%				
511	Layer 2	300		664.9	0.65%				
SET	Layer 3	1	811	2350	0.65%				
		$oldsymbol{R}_{ ext{in}}$	$oldsymbol{R}_{ ext{out}}$						
	Disk 1	39	151.9	220	0.50%				
	Disk 2	49.6	151.9	371.3	0.50%				
FTD	Disk 3	70.1	298.9	644.9	0.65%				
	Disk 4	79.3	309	846	0.65%				
	Disk 5	92.7	309	1057.5	0.65%				
ETD	Disk	419.3	1822.7	2420	0.65%				

entage difference between default geometry and geometries where one detector component (VTX, SIT, TPC, SET) been removed. Negative values correspond to a decrease in absolute value of $\sigma p_T/p_T$, meaning that resolution has

Sensor proposal: ATLASPix

ATLASPix3

ATLASPix is a CMOS sensor developed to fulfil the requirements for the ATLAS upgrade

- Not strictly an ATLAS development
- Monolithic CMOS allows to produce large areas fast and cheap
- No hybridisation wirebonds or C4NP bumps possible
- 25ns timing compliant
- Hit efficiency 99.5% (ATLASPix1)
- Pixel size 150 μm by 50 μm (or smaller)
- Triggered or triggerless readout possible
- 1.28 GBit/s downlink

- 132 columns with 150µm pixel
- One column contains 372 pixels, a configuration register block, 372 hit buffers, 80 trigger buffers and two **end of column (EoC) blocks**. EoC1 is attached to hit buffers and EoC2 to trigger buffers.

3

Readout Systems: KIT single chip board

Starting point is the **ATLASPix3 single-chip card** produced by KIT and used for the tests

10⁴

10³

10²

10

Fe-55 with collimation

Sr-90 with collimation

Telescope and testbeam

Up to 6 GeV **electron beam at DESY** Two **4-layer telescopes** (KIT and UK) concentrate on UK telescope for now Hit driven readout

Reconstruction with Corryvreckan

- iterative **alignment** of the layers
- tracking through 3 or 4 layers
- an arbitrary layer can function as DUT, here
 layer 3 is used as DUT

Cluster reconstruction

Cluster charge increases linearly with √ HV

In the y=50µm pixel direction less than 10% (HV dependent) of the clusters are 2-pixel clusters, mainly at the boundary.

The fit function models the charge collection width as a **step function**, a **Gaussian background** for the tails and a **Gaussian telescope resolution**, here for 1-pixel clusters in the y=50µm direction.

The width of the step function increases from \sim 44µm at 2V to \sim 47µm at 50V

The **telescope resolution** σ_{tel} improves with HV from ~11.2 μ m to ~10.6 μ m

Work needed to synchronise the two telescopes.

More measurements (e.g. energy scan, incident angles) to be analysed

Serial powering of quad modules

Quad modules consist of an array of 2 × 2 chips.

Quads are powered serially, chips on quad are still powered in parallel.

Serial powering limits the amount of current flowing through the stave bus and thus **limits the power consumption**.

Shunt LDO-regulators on the chip provide the correct voltage to the chip.

Signal lines per quad: differential pairs for reset, cmd, clk, trigger per quad, data per chip (=16 lines per quad).

Idea: realise **serial powering** of 3 to 4 quads on a Kapton flex with Aluminium traces.

Requires **new version of the quad flex** and of the **adapter card** to interface with the GECCO readout system.

Serialisation of quads can be done with a power bus or via the new adapter card.

Quad flex 2.0 for serial powering

Serial powering via LDO-shunts

Shared HV, Clk, reset, cmd and trigger lines for the chips; measurement points for voltages / signal Several jumpered debug lines (enable and select lines) impedance matching and termination done on quad

Long Stave Design

Single short truss structure

ter jet cut carbon fibre. 3 prototypes realised.

LAMINATED FOIL า=0,5 mm of 550x460 mm2 Carbon Fiber MJ46

By this summerthree short truss structures have been built.

Experimental sagitta measurement

- Sagitta at 450 mm from the edge =210 micron

- Sagitta at the center of the structure = 280 micron

The 2023 International Workshop on the circular Electron

Positron Collider

14

F.Bosi 04/07/2023

Simulations (sagitta + vibration)

Simulated sagitta is 582 μm for two 200g loads

- First Frequency of resonance = 79,6 Hz
- Second frequency of reasonance = 81,4 Hz
- Third Frequency of resonance = 166,6 Hz

F.Bosi 04/07/2023

The 2023 International Workshop on the circular Electron Positron Collider

15

Cold plate for silicon sensors

F.Bosi 04/07/2023

The 2023 International Workshop on the circular Electron Positron Collider

16

Physics | Lancaster University

Radiation length

			c			2 U-45 mm Th-0 5 mm								russ	stru	cture 0	,16 %)	X0		
_	Component	Quantity	Volume (mm3)	Thickness (Dimension (mm)	2 H=45 mm Th=0.5 mm	Material Radiation Length	Equivalent radiation				1	0.1628 % X0							
ŀ	Supporto a C	20	33 975x20=679.5	0.5	36×4.6	679 5/42 2×1232/10=0 00120	(cm) 26	Length (%)	-											
-	ribassato struttura Supporto a C basso	4	22 175+4-92 7	0.5	26+4.6	92 7/42 2v1332/10-0 000165	26	0.000634*/¥0	-											
-	struttura 1232		2005-4 0100	0.5	00-075	0100142 2-122210 0.0144	20	0.0455 +/20	-											
-	Staffa Intermedia 45	4	202084=8100	0.5	60867.5	8100r42,281332r10=0.0144	26	0.0155 % X0	0,1628 %,X0											
-	Staffa intermedia 36 Colla staffa	2	1215x2=2430	0.5	36867.5	2430/42,2x1332/10=0.00432	26	0.0166 %X0												
-	intermedia 36	2	55.903x2=11.806	0.1	36x67.5	11.806/42,2x1332/10=0.000021	26	0.000081%X0												
	intermedia 45	4	76.719x4=306.88	0.1	60x67.5	306.88/42.2x1332/10=0.000545	33.5	0.00163 %X0												
	Colla supporti a C	24	1.8x24=43.2	0.1	36x0.5	43.2/42.2x1332/10=0.0000768	26	0,000296%X0												
	Colla Araldite struttura 3d - 1332	1	3287.96	1.00	sx1332	3287.96/42.2x1332/10=0.00585	33.5	0,0175%X0												
	CF Reticular Structure 3D	1	15481.5	0.5	1332	15481.5/42.2x1332/10=0.0275	26	0.1059 %X0							Cold I	Plate 0	06 %)	()		
NIC			Volume (mm2)			COLD PLATE		Material Radiation						<u> </u>			,,			
ECHA	Component	Quantity	from CAD	Thickness (mm) Width (mm)	Length (mm)	Equivalent Thickness (cm)	Length (cm)	Equivalent radiation Length (%)	_										
ž	Carbon Fleece (lower)	1	1306.8	0.020	42.2	1332	1306.8/42.2x1332/10=0.0023	106.8	0.0021%X0	DX36 (0.0000.041							
	K13D2U	1	6745.2	0.120	42.2	1332	6745.2/42.2x1332/10=0.0119	26.08	0.0456%X0	000			0.0609 %X0		∕≁					
H	Graphite Foil	1	1633.53	0.025	42.2	1332	1633.53/42.2×1332/10=0,0029	26.56	0.0113 %X0	•										
ľ	Carbon Fleece (upper	1	1124.2	0.020	42.2	1332	1124.2/42.2×1332/10=0.002	106.8	0.00187 % X0											
- H	PIPES&COOLANT										E a disabata di stat						l: 0			
	Component	Quantity	Inner Diameter	Outer Diameter	r Cross Section (mm2	Length (mm)	Total Volume (mm3)	Width (mm)	Equivalent Thickness (cm)	Radiation Lengti	Length (%)					Coo	ling 0,	011		
	Polymide Pipes	2	2.032	2.223	0.638	1332	849.04	36	849.04x2/42.2x1332/10=0.0030	28.41	0.0106 %X0		0.011%							
	Deminarilized Water	2	2.032	0,0000	3.241	1332	4317.39	36	4317.39x2/42.2x1332/10=0.0153	35.76	0.0427 %X0									
		GLUE																		
	Component	Quantity	Thickness (mm)	Volume (mm3)) Length (mm)	Equivalent Wide	Equivalent Thickness (cm)	Material Radiation Length (cm)	Equivalent radiation Length (%)							Ch		1 0/		
	Epoxy Glue (Ecobond 45)	2	0.050		1332	42.2	0.0050	44,37	0.0112%X0				0,0112 %X0			Giù	ie 0,01	1 % .		
	Component	Material	Thickness (mm)	Equivalent Thickness (cm)	Material Radiation Length (cm)	Equivalent radiation Length (%)	-													
2	FPC Metal Layer	Aluminum	0.050	0.050	8.896	0.056 %	14 3						0.114 %							
"	FPC Insulating Layer	Polymide	0.100	0.100	28.41	0.035 %	-													
ľ	Glue	Ecobord 45	0.100	0.100	44.37	0.023 %														
S.	Component	Material	Thickness (mm)	Equivalent Thickness (cm)	Material Radiation Length (cm)	Equivalent radiation Length (%)														
18 Bi	Metal Layer	Aluminium	0.200	0.200	8.896	0.225 %	32.5						0,1705 %							
POWE	Insulating Layer	Polymide	0.200	0.200	28.41	0.070 %	8									Total				
-	Glue	Ecobond 45	0.100	0.100	44.37	0.023 %										lotal	0,533 %	% XU		
ECTOR	Component	Material	Thickness (mm)	Equivalent Thickness (cm)	Material Radiation Length (cm)	Equivalent radiation Length (%)	02%20					1	0.533%×0							
DETE	Pixel Chip	Silicon	0.050	0.0050	9.369	0,0533%	0'02					Total	e							
	F Bosi 04/	07/2023				The 2	023 Internation	nal Worksho	p on the circular	Electror	1					•	31			

Positron Collider

Thermal simulation

55nm chip project

First results from October 2022 submission (not HV) MPW submitted to SMIC in 55nm **HVCMOS process** 1kΩ high resistivity wafer; **August 2023**

3 sections

 1) 32 × 20 pixel discriminator c

19316/contributions/143495/

- Hui Zhang's talk <u>https://indico.ihep.ac.cn/event/19316/</u> contributions/142772/
- Ruoshi Dong's poster <u>https://indico.ihep.ac.cn/event/</u> 19316/contributions/143499/
- Yang Zhou's poster <u>https://indico.ihep.ac.cn/event/19316/</u> <u>contributions/143507/</u>

See also the **Arcadia** project https://indico.ihep.ac.cn/

Conclusion

Physics | Lancaster Strain University

We are making progress on several fronts:

- Understanding the sensor
- The telescope is a good example for a multi-sensor assembly
- First version of quad modules produced and operational in Milano and Edinburgh
- New version of quad modules for serial powering on a stave is being designed
- First prototype of long stave using carbon fibre space frame
 - Sagitta and measurements and simulations
 - Thermal simulation
- SMIC 55nm HV process submitted by IHEP and KIT with test structures and a small fill factor pixel array.

Backup

DAQ: YARR Yet Another Rapid Readout

https://iopscience.iop.org/article/ 10.1088/1742-6596/898/3/032053

Trenz TEF1001

YARR is a small **self-contained DAQ system**. Linux PC with a x4 **PCIe slot for the FPGA card**

FPGA card: e.g. **Trenz TEF1001**, XpressK7,... **FMC cards** for FE-I4 and RD53A

Up to **1.6GBit/s possible** with this setup.

We have used the YARR readout with a digital RD53A module in Lancaster & Edinburgh.

Todo: Adaptation to ATLASPix3 necessary:

• Software

Ohio card

4 mini Display ports 5 diff lines each

