Silicon Detector Technologies for the IDEA Tracker

2023 international Workshop on the high energy Circular Electron Positron Collider (CEPC) 23-27 October 2023 Riccardo Zanzottera - Università di Milano and INFN For the RD_FCC Silicon Tracker community (COMO, GENOVA, MILANO, PADOVA, PERUGIA, PISA, TORINO)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

UNIVERSITÀ

DI MILANO

The IDEA Concept: inner tracking

Vertex detector:

- target high granularity
- low power consumption (air cooling)
- may compromise between time-resolution vs. power

Silicon internal tracker

- precision points connecting vertex with drift chambers
- low p_t tracking

(930)

bunch crossing identification

More details in F. Palla's talk

Nanjing, 23 October 2023

UNIVERSITÀ

DI MILANO

The IDEA Concept: Si Wrapper

- Precision silicon layer around the central tracker
 - improve momentum resolution
 - extend tracking coverage in the forward/backward region
 by providing an additional point to particles with few measurements in the drift chamber
 - precise and stable ruler for acceptance definition
 - it may provide TOF measurement
- Covered area ~90 m²
 - important impact on services
 - technology suitable for large size production

Si Detector Technologies

- Focus on depleted monolithic CMOS detectors
 - High-Voltage/High-Resistivity CMOS processes commercially available
 - CMOS Foundries are able to produce large volume of detectors at a convenient price
 - Depleted region provide fast rising and "high-amplitude" signals
 - No need of the complex and costly interconnection technique used in hybrid detectors
- Two technologies presented in this talk:
 - ATLASPIX3 KIT, China, INFN, UK collaboration
 - full reticle size detector, implementing most features needed for deployment in the Internal Tracker and Si Wrapper
 - ARCADIA INFN/LFoundry driven development, collaborations with PSI
 - fully depleted sensors, with high granularity and low power consumption for the Vertex Detector
 - more detail in D.Falchieri's talk
- **Resistive Silicon Detectors**, with **tens of ps time resolution** are considered as an opportunity for the Silicon Wrapper (showing results from Torino, Trento, Perugia and FBK collaboration)

ATLASPIX3 Detector

ATLASPIX3 general features

UNIVERSITÀ

MILANO

- TSI 180 nm HVCMOS technology
- full-reticle size **20×21 mm²** monolithic pixel sensor
- \circ 200 Ωcm substrate (other substrates up to 2 k Ωcm also possible)
- 132 columns of 372 pixels
- **pixel size 50×150 \mum² (25×150 \mum² on recent prototypes)**
- breakdown voltage ~-60 V
- up to **1.28 Gbps downlink**
- 25 ns timestamping
- analog pixel matrix, digital processing in periphery
- Both triggerless and triggered readout modes:
 - two End of Column buffers
 - 372 hit buffers for triggerless readout
 - 80 trigger buffers for triggered readout

Nanjing, 23 October 2023

ATLASPIX3: Testbeam performance

- Telescope of 4 ATLASPIX3 single chips in DESY electron beam
- **Cross-talk** between pixels due to the capacitive coupling of the transmission lines between the matrix and the end-of-column logic is limited to **~1% of total hits**
- Efficiency > 99% and uniform in the detector for depletion voltages >20 V
- Position resolution in the 10-11 μm range

UNIVERSITÀ

DI MILANO

ATLASPIX3: Multi-chip module

- Multi-chip module assembly
 - aggregates electrical services and connection for multiple sensors
 - quad module, inspired by ITk pixels
 - building block for staves and disks

testbeam and X-ray tube data

- No interference observed in the simultaneous operation of multiple chips
 - threshold tuning and noise performance same as individual chip characterization

Nanjing, 23 October 2023

ATLASPIX3: Serial powering

- Version ATLASPIX3.1 can be biased by serial powering through two shunt/low dropout regulators
 - digital and analog (VDDD/A)
 - 3 bits to tune threshold of shunt regulator
 - 3 bits to tune VDD
- Measured regulator performance
 - threshold and noise performance are the similar using SLDO or direct VDDD/A powering
 - DAC dinamic range of few tens of mV
 - Full chip turn-on at I=300 mA
 - Input voltage 2.3 V
 - Power consumption: \sim 700 mW/chip or \sim 175 mW/cm²
- Integration model is to join modules by a bus implementing a serial powering chain
 - examples in F. Palla's talk
 - metal in the module hybrid and the power bus dominates the thickness of a detector layer (~0.44% X₀)
 - considering to move Al as conductor for PCBs

Nanjing, 23 October 2023

ATLASPIX3: Serial powering

- Serial powering of two SCCs with regulators connected in parallel
 - measurements of the current distribution between digital and analog part of the two chips and the resulting operation voltages
- New design of quad modules implementing Serial Powering
 - chips regulators connected in parallel
 - need to study how regulator to regulator differences influence operation of the chips
 - design of the **PCB almost ready** for production

Nanjing, 23 October 2023

ATLASPIX3: Serial powering

- Comparison of performances of the two chips for Direct Voltage powering and for Serial powering when singularly powered and when connected as shown before
 - degradation of performance for one the chips due to non-optimal values of operating voltages
 - results resumed in table

	DV single (tuning)		DC single (tuning)		DC connected (scan)	
	Threshold [V]	Noise [V]	Threshold [V]	Noise [V]	Threshold [V]	Noise [V]
37	0.644±0.015	0.019±0.003	0.654±0.015	0.023±0.003	0.884±0.074	0.032±0.003
39	0.715±0.028	0.021±0.003	0.718±0.019	0.023±0.003	0.788±0.069	0.020±0.002

SCC

SCC

ARCADIA

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

- Fully Depleted Monolithic Active Pixel CMOS sensor technology platform allowing for:
 - Active sensor thickness in the range 50 μ m to 500 μ m;
 - Operation in **full depletion** with fast charge collection by drift
 - Small collecting electrode for optimal signal-to-noise ratio;
 - Scalable readout architecture with ultra-low power capability O(10 mW/cm²);
 - Compatibility with standard CMOS fabrication processes
 - LF 110nm technology

JNIVERSITÀ

MILANO

- MD3 demonstrator
 - sensitive area 12.8cmx12.8cm
 - 512x512 pixels, Double Column arrangement
 - $25x25 \ \mu m^2$ pixels
 - Clockless

All details in D.Falchieri's talk tomorrow moring!

Nanjing, 23 October 2023

ARCADIA: MD3 Results with cosmics

- Cosmic ray data taking: 1 week
- 3-plane MD3 installed on a black box
- Threshold 290 e-, MPV = 4 pixels
- More than 90% of clusters with less than 6 fired pixels
- Preliminary results on residuals show a standard deviation of 12-14 μm (multiple scattering...)

Nanjing, 23 October 2023

Integration with MDI

Development with the FCCee MDI accelerator group

- Integration with realistic local support, cooling and electrical services
- Mockup to be build at LNF to demonstrate the interface with the machine and the mixed cooling
 - air cooling for vertex
- PEEK – water cooling for internal tracker Material budget x/X₀ [% PCB Silicon GlueEcobond45 8 Kapton Rohacell Water CarbonFiber CarbonFleece 6 Aluminum ----- IDEA CDR Vertex All details in F. Palla's talk in 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 accelerator session! $\cos(\theta)$

TOF measurement in Si Wrapper

- Particle IDentification is essential for many physics measurements
- Needed on a wide momentum range

MILANC

- $B_s^0 \rightarrow D_s K$ has K up to 30 GeV/c
- K for flavour tagging in $b \rightarrow c \rightarrow s$ decay chains are pretty soft
- useful in tau physics for Vus measurements in $\tau \rightarrow K \nu$
- dN/dx measurements in Drift Chamber provides 3σ separation up to 30 GeV/c
- Confusion region about 1 GeV/c can be covered by TOF measurement with resolution <100 ps

Can it be implemented in the Si Wrapper without compromising the spatial resolution?

Resistive Silicon Detectors (RSD)

- LGAD detector with **continuous gain layer**
- Charge collection through resistive n-layer
- Readout by induction on **AC coupled pads**
- Fully active detector
 - avoids inefficient regions due to the insulation between pixels needed in LGAD sensors
- Charge sharing defined by the relative impedance of the path between the charge deposition and readout electrodes
 - pad pitch >> lateral dimension of charge deposit
 - sharing is deterministic (in low pitch pixel detectors is dominated by Landau fluctutations)
 - resolution depends on the S/N ratio of the readout electronics

RSD: Signal sharing example

TCAD Simulation model...

RSD: Prototype performance

- Spatial resolution << pixel pitch
 - 10 μ m achieved in lab tests with 200 μ m pixel pitch
 - more space in readout pixel cell to implement precision TDC
- Timing resolution about independent from pixel pitch
- Drawbacks:
 - hybrid detector (but bump-bond pitch is easily achievable commercially)
 - effective pitch is >2 readout pitch: particle flux limited by pixel size
- Suited for Si Wrapper:
 - particle density at 2 m from the interaction region should not be a concern at e⁺e⁻ colliders
 - no need to push for extremely low material: hybrid detectors are acceptable

 $\begin{array}{ccc} 1.3\times1.3\ \text{mm}^2 & 450\times450\ \mu\text{m}^2 & 200\times340\ \mu\text{m}^2 \\ & \text{Cross-shaped electrodes} \end{array}$

Summary and outlook

- The IDEA tracker layout poses different challenges for the different silicon trackers:
 - Extremely high resolution and low-mass are needed for the vertex detectors
 - System issues are the focus topics for the large area detectors
 - Depleted Monolithic CMOS pixel detectors are a cost-effective and high-performance solution
- **ATLASPIX3** (AMS/TSI 180 nm) is a well-developed full-size sensor:
 - Already a possible solution for the bulk of the detector silicon area
 - It is used to investigate integration and system issues
- **ARCADIA** (LF 110 nm) provides a global platform for fully-depleted CMOS sensors
 - The sensitive area has been developed and detector performance appears very promising
 - Fine granularity and low power make it suitable for the vertex trackers
 - Periphery needs to implement trigger logic, command decoder, 1.28 Gbps serializers...
- **Resistive Silicon Detectors** are an extremely interesting option for the Silicon Wrapper:
 - Micrometric spatial resolution even with coarse granularity: reduced number of channels
 - Provide a TOF layer supplementing the drift chamber particle ID
- Plenty of fascinating electronic design and sensor development will be needed to arrive to build a state-of-art detector within the time scale of future e⁺e⁻ factories
- At the same time, it is possible to address system aspects with already existing detectors

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

ATLASPIX3 Readout Architecture

- Chip architecture
 - organized in 132 columns, each with:
 - 372 pixels
 - 372 hit digitizers (HDs)
 - 80 content addressable memory cells (CAM)
 - two end-of-column multiplexers (EoC mux)
 - digital part (HDs, CAM, EoCs) in chip periphery, separated from analog pixels electronic (CSA and comparator)
 - chip periphery also contains the readout control unit (RCU), the clock generator, configuration registers, DACs, linear regulators and IO pads
 - triggerless and triggered readout
 - two EoCs
 - 372 hit buffers for triggerless RO
 - 80 trigger buffers for triggered RO

ARCADIA: MD3 Architecture

- Pixel size 25 μ m x 25 μ m, Matrix core 512 x 512, 1.28 x 1.28 cm silicon active area, "side-abuttable"
- Triggerless data-driven readout and low-power asynchronous architecture with clockless pixel matrix
- Event rate up to 100 MHz/cm² (post-layout simulations, to be demonstrated: test-beam in late 2023)
- Each sector has an independent readout and output link when operating in High Rate Mode
- Sector data is sent out (8b10b encoded) via dedicated 320MHz DDR Serialisers
- In Low Rate Mode, the first serialiser processes data from all the sections. The other serialisers and C-LVDS TXs(*) are powered off in order to reduce power consumption.

UNIVERSITÀ Degli studi Di Milano