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• To explore applications of novel technologies such as integrated 
CMOS sensors, additive manufacturing or machine learning, and to 
assess their performance for the challenging needs of future or 
upgraded HEP experiments.

• …

Overview – Key aims of 
AIDAinnova
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DMAPS Projects
q 7 projects are (partially, not exclusively) supported by the AIDAinnova framework using 4 

different processes provided by 2 foundries: LFoundry (Wuxi Xichanweixin 
Semiconductor) and TowerJazz à Tower Semiconductor (Intel as of 2022)

q All developments have samples, characterisation in full swing

large 
electrode
(radhard)

small 
electrode
(high 
granularity)

WP5: Depleted Monolithic Active 
Pixel Sensors

Submission Process Availability Target Comments Contact 
Institute

Task Contact

TJ-MALTA 2
/3

TowerJazz 
180 nm

Beginning 2021
MPW Q1 2022

High-gran./ Rad. hard
Task 5.2/5.3

LHC CERN Carlos Solans 
Sanchez

TJ-Monopix 2
/3 (OBELIX)

TowerJazz
180 nm

Spring 2021
Initiating design

High-granularity
Task 5.2

Belle II Bonn Jochen Dingfelder

TJ 65 TowerJazz 
65 nm

September 2021 High-granularity
Task 5.2

Generic R&D / ALICE IPHC Jerome Baudot

ARCADIA LFoundry 
110 nm

Summer 2021 High-granularity
Task 5.2

Demonstrator chip INFN Manuel Rolo

LF-Monopix 2 LFoundry 
150 nm

Beginning 2021 Radiation hard
Task 5.3

High granularity foreseen Bonn/CPPM Marlon Barbero

RD50-MPW 3
/4

LFoundry 
150 nm

Spring 2022 High-granularity/
Radiation hard
Task 5.3

R&D Liverpool Eva Vilella

MiniCactus LFoundry 
150 nm

Beginning 2021 Radiation hard
Task 5.3

Timing R&D IRFU Philippe 
Schwemling 323 October 2023



l In the next slides I present a brief overview and latest results 
for each development line 

DMAPS – Summary of activities

Mini Cactus 2

Mini-Malta3l Disclaimer: In AIDAinnova the focus is the analog FE and sensor 
development. Readout aspects are usually too experiment specific and 
thus are less of a focus in our work  
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Tower 180 nm        
TJ-MALTA-2&3  
TJ-Monopix-2 
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TJ-MALTA
High granularity, small electrode

C. Solans. L. Flores et al.

Goal: large (1x2 cm2 (Malta2) à 3x2 cm2 (Malta3)) radhard sensor/chip w/ small 
electrode and high granularity, HL-LHC-layer-5 compatible with low power
asynchonous readout architecture. Sensor&FE same as TJ-Monopix. 

CERN and others (Bonn, CPPM, Oxford ...)
- 180 nm technology - 

• main objective of TJ-MALTA2: 
• make design radhard (> 1e15 neq/cm2):

i. shape charge collection geometry
ii. optimize FE against RTS noise
iii. use high resistive Cz-Si substrate (100 µm) rather than epi-Si (25 µm).

• improve asynchronous readout

• objective TJ-MALTA3: 
• exploit full reticle size: 3x2 cm2

• improve on remaining MALTA2 issues 
• add 1.28 GHz local clock 
• target: mini-MALTA MPW in Q2 2023
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TJ-MALTA
High granularity, small electrode

C. Solans. L. Flores et al.

Goals of MALTA2 achieved:
 
• radhard to >1E15 neq/cm2
• @ 3E15 neq/cm2 > 95% in 25ns

• RTS noise mitigated 

• excellent matrix homogeneity 2x1 cm2

Malta1

Malta2

23 October 2023
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TJ-MALTA
High granularity, small electrode

C. Solans. L. Flores et al.

Mini-MALTA3 submitted in June 2023:
• 5x4 mm2 demonstrator
• 48x64 matrix size of 36.4 um2

• No clock over the matrix
• Synchronization memory with 0.78 ns time resolution
• Fast clock generation with STFC PLL from 80 MHz clock
• Output data scrambled using Aurora

• Next step in asynchronous read-out 
architecture

• Full reticle size 3x2 cm2 

• Asynchronous hit propagation
• Time tagging at end of column
• Add a 1.28 GHz local clock generated from 

a PLL for time tagging
• Fast read-out with standard protocol

Full MALTA3 expected to submit Q3 2024:• Next step in asynchronous read-
out architecture
• Full reticle size 3x2 cm2

• Re-use front-end from MALTA2
• Improve 2x8 pixel group reference 

pulse generation and masking
• Asynchronous hit propagation

     
    

• Following top-down approach 
• Using digital flow design tools

• Push the technology to the limit 
       
    

• Aim MPW in Q3 2024 

AIDAinnova WP56 September 2023 17

MALTA3

Flow diagram of MALTA3
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TJ-Monopix 2
High granularity, small electrode

l Clear improvements wrt TJ-M1 
before and after irradiation

• sensor and chip working
• assembly problems (wire bonding 

sensibility) reduce yield, is now 
manageable, but still problematic

• a temporary major problem at 5 MHz 
BC-ID clock interfering now 
understood and circumvented

• characterisation finally in full swing
• baseline for Belle II VTX upgrade à 

Obelix chip:
• Uses analog part from TJ 

Monopix 2
• New digital periphery with several 

additional features

Bonn, CERN, CPPM, IRFU
- 180 nm technology - 
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TJ-Monopix 2
High granularity, small electrode

Lars Schall, C. Bespin et al 

• very high 
efficiency 
(before 
irradiation)

• irradiation 
planned 
Q1/Q2

resolution 8.6 µm

Lab measurement

• Recent timing 
characterization

• Contribution 
from jitter 
(device 
electronic noise
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TJ-Monopix 2
High granularity, small electrode

Lars Schall, C. Bespin et al 

• In-time ratio: percentage of hits within 25 ns
• Move sliding window over (projected) trigger 

distance distribution
• 15 ns, 20 ns, 25 ns, 50 ns window width
• 98.92 % for 25 ns window

• Time walk corrected
• Distribution is skewed, matches with time walk curve 
• (Bad) fit yields 5.5 ns time resolution
• Trigger scintillator resolution of approx. 1 ns 
• Detector time resolution: 5.4 ns

• Detector contribution dominates 
• To investigate other flavors (Cz...)

Test beam measurement
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TPSCo 65 nm process of Tower
(new window of opportunity)       

Tower 65nm
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TPSCo 65 nm
High granularity (Tower)

J. Baudot, et al

Goal: exploring the new technology (large collaboration effort, CERN + 24 institutions)
including stitching, .... small electrode designs

1+2 submissions so far: MLR1 (2020), ER1 (2022) each containing several structures and designs

from MLR1

promising results from 
MLR1
leakage cur. ✓
Testbeam with DPTS 
(digital 15 µm) proved that 
process modification works

23 October 2023
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TPSCo 65 nm
High granularity (Tower)

J. Baudot, et al

Promising radiation tolerance:
• DPTS (digital) with 15 μm pitch 
• Beam test results 
• also for digital cells as shown 
with TID measurements on ring oscillators 

23 October 2023
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TPSCo 65 nm
High granularity (Tower)

J. Baudot, et al23 October 2023



LFoundry 150 nm        

• LF-Monopix-2 
• RD50 – MPW2/3 
• CACTUS 
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LF-Monopix 2
Large electrode, radiation hardness

Lars Schall, C. Bespin, et al.

irradiated devices (1e15 neq/cm2 @ Bonn Cyclotron)
• no significant degradation at this level except for leakage current increase

• fully depleted @ 100 V bias (15 V unirr.)

23 October 2023
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LF-Monopix 2
Large electrode, radiation hardness

Lars Schall, C. Bespin, et al.

• intensive test beam characterisation
• very high (>99%) efficiency (in-time) after 1e15 neq/cm2

• ~no efficiency degradation w.r.t. unirradiated devices

23 October 2023
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LF-Monopix 2
Large electrode, radiation hardness

Lars Schall, C. Bespin, et al.

Recently exploring the radiation hardness limit by going from 1e15 neq/cm2 ➝ 2e15 neq/cm2  

• Challenging to operate chip at such high radiation level
• missing leakage current compensation
• beyond original target of outer tracking layer

• Studies on-going …

• High noise increase observed:
• Unirr @ -40V bias (~90e)  
• 1e15 @ -150V bias (120e)  
• 2e15 @ -250V bias (~170e)

• Difficult to reach low threshold for stable operation

23 October 2023
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RD50-MPW2/3 
Large electrode, radiation hardness,

high granularity

E. Vilella, R. Hernandez et al

Goal: series of MPWs (1 ... 4) to achieve very small pixels (60 x 60 µm2) radhard 
@ HL-LHC level 5th layer by large electrode design (all electronics inside deep well)
MPW2: small prototype 
• pixels: 60 x 60 μm2
• in-pix CSA + discriminator, analog R/O
• testbeams performed
• charge collection ok

MPW3: added digital R/O (column drain)
• Vbreakdown ~ 150V
• very high noise (> 2000 e) due to noise
coupling from digital periphery
• Poor test beam efficiency due to 
high thresholds

MPW4 (sub. May 2023): 
• backside processing to improve 
radiation hardness
• Address noise limitation of MPW3 by 
separate power domains of pixel matrix
and periphery

23 October 2023



21

CACTUS
large electrode

P. Schwemling, Y. Degerli et al

Goal: Develop CMOS pixels for timing applications (~50 ps) 

Mini CACTUS = small prototype to address limitations of CACTUS (low S/N) in 
LFondry 150nm

• 65 ps mip time resolution achieved in test beams 
for unirradiated devices
• compared calibrations and resolutions using photons

of different energies (241Am and @SOLEIL)
Ø calibrations ✓
Ø 𝜎t for photons (understandably) worse (320 ps)
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CACTUS
large electrode

P. Schwemling, Y. Degerli et al

Next: 
• characterisation after 1e14, 1e15, and 1e16 neq/cm2

• new Mini-CACTUS submission May 2023, back 
December 2023

Mini-CACTUS2:
• ~ 2 times larger than Mini-CACTUS
• 0.5 mm x 1 mm (baseline), 1 mm x 1 mm and 0.5 mm x 0.5 

mm diodes
• 50 µm x 150 µm and 2 50 µm x 50 µm small test diodes
• 3 different preamps
• New multistage discriminator with programmable 

hysteresis
• Improved layout for better mixed-signal coupling
rejection

• CEA-IRFU & IFAE-Barcelona coll.

• Expect better timing performance from simulation …
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LFoundry 110 nm        

ARCADIA
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ARCADIA 
High granularity

M. Rolo et al.

Goal: Develop DMAPS technology platform in 110 nm technology. Largely funded 
by INFN. Targeting small pixels, very low power, various thicknesses
• 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk
• Custom patterned backside, patented process developed with LFoundry

CR tests:
telescope

• ARCADIA-MD3 Demonstrator
• Included several structures/chips

• Pixel down to 10 µm
• ASIC for strip r/o
• X-ray counter
• Timing detector 
• …

23 October 2023
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ARCADIA                
High granularity

M. Rolo et al.

Timing detector

23 October 2023
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Summary

• AIDAinnova contributes significantly to DMAPS 
developments for future HEP experiments

• Many different projects targeting different 
requirements such as high resolution, high 
radiation tolerance, fast timing and fast readout

• Very good results on all fronts and we expect more 
in the next two years of AIDAinnova 
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Further readings

27

TJ-MALTA

l JINST 2021 https://doi.org/10.5281/zenodo.6951327

l TWEPP 2021 https://doi.org/10.1088/1748-0221/17/04/C04034
l IEEE TNS 2022 https://doi.org/10.1109/TNS.2022.3170729 

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167390 

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167226 
l NIM A 2023 https://doi.org/10.1016/j.nima.2022.167809
• EPJ-C 2023 https://doi.org/10.1140/epjc/s10052-023-11760-z
• JINST 2023: https://doi.org/10.1088/1748-0221/18/03/C03011
• JINST 2023: https://doi.org/10.1088/1748-0221/18/03/C03013

TJ-Monopix

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167189

l arXiv 2023 https://doi.org/10.48550/arXiv.2301.13638

LF-Monopix

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167224

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.166747

CACTUS

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167022

TJ 65nm

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167213

RD50-MPW 

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.166826

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167020

l JINST 2023 https://doi.org/10.1088/1748-0221/17/12/C12017

WP5 meetings at:
https://indico.cern.ch/category/13503/

• 18 publications so far
• More to come
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