

MightyPix

Update on the HV-CMOS chip for LHCb's Mighty Tracker

Toko Hirono, Richard Leys, Ivan Perić, **Sigrid Scherl***, Nicolas Striebig **sigrid.scherl@cern.ch*

2023 International Workshop on the High Energy Circular Electron-Positron Collider

The Mighty Tracker

- New hybrid tracker for LHCb High Luminosity upgrade [1]
- Outer parts: Scintillating Fibre (SciFi) Tracker
- Inner parts: HV-CMOS pixel chip **MightyPix** → Good granularity and radiation hardness

HV-CMOS

- HV-CMOS = High Voltage Complementary Metal-Oxide-Semiconductor
- Sensors also called HV-MAPS = HV Monolithic Active Pixel Sensors
- Advantages:
 - Very thin ~ 700 μm down to 50 μm
 - Radiation hard
 - Fast charge collection via drift
 - Cheaper than hybrid
 - Fabricated in standard CMOS process

HV-CMOS

- Sensing element and readout circuit on same chip
- High reverse bias (~ 200 V) creates thick depletion region between deep n-well and p-substrate
- n-well/p-substrate diode acts as sensor
- Readout electronics isolated from high voltage by deep n-well
- Photons and charged particles create electron/hole pairs, collected via drift

Working principle of HV-CMOS sensors.

HV-CMOS

Quadruple-well process

- PMOS and NMOS transistors are placed in shallow wells
- PMOS isolated by additional deep p-well
- High voltage can be applied between substrate and deep n-well

Working principle of HV-CMOS sensors.

MightyPix

- Based on knowledge of previous HV-CMOS chips
 - ATLASPix (Proposed for CERN's ATLAS experiment)
 - MuPix (Used for PSI's Mu3e experiment)
- Final design requirements for MightyPix
- First prototype: MightyPix1

Parameter	Required Value
Chip size	$\sim 2 \text{ cm} \times 2 \text{ cm}$
Sensor thickness	200 µm
Pixel size	< 300 μm × 100 μm
Inactive area	< 4%
Time resolution	< 3 ns
Power consumption	$< 0.15 W/cm^2$
NIEL ³	$6 imes 10^{14}$ 1 MeV n_{eq}/cm^2
Data transmission	\leq 4 × 1.28 Gbit/s links per chip

MightyPix1: Overview

- Implementation: TSI 180 nm process
- **Submission:** in May 2022
- **Chip size:** ~ 2 cm x 0.5 cm \rightarrow Full length, $\frac{1}{4}$ of final width
- **Pixel matrix:** 29 columns, 320 rows
- **Pixel pitch:** 165 μm × 55 μm
- Inside pixel: CMOS amplifier and CMOS comparator
- **Data format:** 2 x 32 bit words per hit
- Output rate: 1.28 Gbit/s going to IpGBT

MightyPix1: Overview

- Clock generation:
 - External 40 MHz coming from IpGBT
 - Internal PLLs with 40 MHz ref clock

Single ended

double clock

Single ended

max. 5 MHz

Differential

320 Mbps

Timing and

Fast Control

(TFC)

2-wire

6-wire w/

Bias voltages:

- Integrated 10 bit voltage DACs
- Digital interfaces:
 - Slow Control (I2C)
 - Timing and Fast Control (TFC)
 - Shift Register (SR)

FEreset, BXreset, Snapshot

SYNC

Serial out

320 Mbps

1.28 Gbps/640 Mbps/

Serializer

Scrambler

LVDS

MightyPix1: Analogue Part

9 Oct 23, 2023 Sigrid Scherl – MightyPix

MightyPix1: Analogue Part

Schematic of the MightyPix1 Analogue Pixel (Source: Ivan Perić, KIT)

MightyPix1: Amplifier

- CMOS type amplifier inside pixel
- Equivalent Noise Charge: 67 e⁻ (88 fF pixel capacitance)
- Time walk: 2.4 ns (2400 e⁻ to 24000 e⁻ signals)

1.8

MightyPix1: Digital Readout

- Readout driven by Readout Control Unit (RCU) FSM
- Working principle:
 - Every pixel has one hit buffer, where hit is stored
 - Data loaded from highest active hit buffer to End of Column (EoC) buffer
 - Data read from EoC buffer
 - For every hit a 2 x 32 bit data word is generated
 - Parallel scrambler analogue to VELOPix (optional)
 - Data sent to serialiser tree and sent off-chip

MightyPix1: LHCb Specific TFC Signals

LHCb sends Timing and Fast Control (TFC) signals to all FE modules

- **BXReset:** Reset internal BXcounter to synchronise chips to same BX
- **Snapshot:** Capture number of received TFC commands (partially implem.)
- **FEReset:** Reset all modules except TFC receiver, BXcounter, chip configuration registers
- **Cal:** Could be used to control an on-chip injection circuit (not yet implem.)
- **Sync:** Chip outputs sync pattern, configurable via configuration register

Measurements: First results with MightyPix1

- First measurements started this summer
- Successfully tested basic functionalities and newly implemented digital interfaces
- Test beam with irradiated chips next year

GECCO Setup at KIT for measuring MightyPix1

Measurements: First results with MightyPix1

 IV-curve to Measure Breakdown Voltage (J. Hammerich, University of Liverpool)

Sr-90 ToT Measurement

(L. Dittmann, University of Heidelberg)

Simulations: Efficiency of MightyPix1 Readout

- Can MightyPix1 handle hit rates at LHCb?
- Maximum hit rate at Mighty Tracker: 17 MHz/cm²
- Test readout system in simulations
- Model of pixel matrix + synthesised digital design
- Simulated 500 000 events for different hit rates
- Fixed ToT to 2 us (as worst-case scenario)
- Limits to efficiency set by experiment:
 - Can maximally send 23.75 MHz/cm² off-chip through 1.28 Gbit/s readout link
 - Hits must be read out within 89.1 us, afterwards BXID repeats

Simulations: Efficiency of MightyPix1 Readout

- Simulated efficiency of MightyPix1 readout mechanism > 99% up to 20 MHz/cm²
- Drop at 21 MHz/cm² as readout times reach 89.1 us

 \rightarrow Hit buffers not read out fast enough \rightarrow new hits are missed

How can we speed up readout and increase efficiency?

Towards MightyPix2: New Readout

- Cannot increase readout link speed
- Decrease data size:
 - 2 x 32 bits per hit \rightarrow 1 x 48 bits per hit
 - Can send up to 31.66 MHz/cm² off-chip
- Increase speed of readout FSM:
 - 32 bit at 40 MHz \rightarrow 48 bit at 160 MHz
 - Hit buffers read out faster, less hits missed
- New gearbox:
 - FIFO of depth 16 stores hits before they're sent off-chip
 - Fit hit words into 32 bit format (1 hit = 1.5 x 32 bit)

Improved Readout for MightyPix2 (Source: Nicolas Striebig, KIT)

Towards MightyPix2: Efficiency of New Readout

- Simulated efficiency of improved readout mechanism > 99% up to 31.66 MHz/cm²
- Drop at 31.66 MHz/cm² as 1.28 Gbit/s readout link works at full capacity

Towards MightyPix2: Additional Features

- Fully compliant TFC interface
 - Improved Interface: Link training phase and lock phase, tolerant to transmission errors
 - Implementation of last TFC command (snapshot)
- Fast chip configuration
- Increased pad size
- Serial powering
 - Integrated Shunt-LDO Regulators for VDDA and VDDD

Summary

- MightyPix1
 - First monolithic active pixel sensor compatible with LHCb
 - Measurements in progress, basic functionalities tested successfully
 - Simulation of the readout mechanism show > 99% efficiency up to 21 MHz/cm²
- MightyPix2 design in progress
 - Discussions on new features in progress
 - Simulations of improved readout mechanism shows > 99% efficiency up to 31.66 MHz/cm²

References

[1] The LHCb Collaboration, Framework TDR for the LHCb Upgrade II - Opportunities in flavour physics and beyond, in the HL-LHC era, Tech. Rep. CERN-LHCC-2021-012, LHCB-TDR-023, CERN, Geneva (2021).

Backup

23 Oct 23, 2023 Sigrid Scherl – MightyPix

MightyPix1: Focused Ion Beam Surgery

- A load signal for the chip config was not connected correctly
- Fix idea: make one cut and one connection
 → Focused Ion Beam surgery
- First attempt by UK company did not work
- Second attempt by company in Netherlands worked!

