

Status of the ARCADIA project for the implementation of innovative CMOS monolithic sensors

CEPC 2023

23-27 October 2023, Nanjing

Davide Falchieri

INFN Bologna, Italy

on behalf of the ARCADIA collaboration

Motivations of Arcadia

- Large-area monolithic pixel detectors for particle tracking: low power, high-rate capability, low cost per unit area, low material budget
- Target applications:
 - medical imaging (e.g. Proton Computed Tomography)
 - astro-particle detection on satellites
 - high energy physics experiments

CSES-01 http://cses.roma2.infn.it

The IDEA concept

Arcadia is designing possible solutions for high precision silicon detectors:

vertex detector

 \rightarrow pixel detectors (FDMAPs)

- silicon internal tracker \rightarrow strip detectors (FDMAMs)
- silicon wrapper / TOF

 \rightarrow pixel detectors with fast timing

Arcadia:

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

Fully Depleted Monolithic Active Pixel CMOS sensor technology platform:

- active sensor thickness in the range 50 μm to 500 $\mu m;$
- operation in **full depletion** with fast charge collection by **drift**
- small collecting electrodes for optimal SNR
- scalable readout architecture with ultra low-power capability (O(10 mW/cm²))
- compatible with standard CMOS fabrication process
- technology: LF11s 110 nm CMOS node (quad-well both PMOS and NOMS), high resistivity bulk
- custom patterned backside, patent developed in collaboration with L-Foundry

Sensor concept

- n-type high resistivity active region
- reverse-biased junction at the bottom: depletion grows from back to top
- n-epi layer: reduce punch-through current between p+ and deep pwells
- sensing electrodes can be biased at low voltage (< 1V)
- nwells with electronics shielded by deep pwells

Wafer post-processing: starting material and backside process

type 1:

p+ starting substrate: thinning down to a 100 μm total thickness, active thickness below 50 μm

type 2:

post-processing: thinning, then back-side **p+ implantation** and laser annealing, no patterning on backside

type 3:

post-processing: thinning, lithography, backside p+ implantation and laser annealing, insulators and metal deposition

Arcadia technology demonstrators

Arcadia 3rd engineering run (silicon received in middle 2022) List of produced devices:

- main demonstrator MD3: pixel sensor built with an array of 512 x 512 25-μm pitch pixels
- small **pixel arrays** with different **pitch** (10 μ m 25 μ m 50 μ m) with and w/o active readout
- strip detectors with and w/o active readout
- ASTRA 64-channel ASIC for Si-strip readout
- **test structures** for sensors characterization and process qualification
- low power MATISSE (ultra low power front-end for space instruments)
- HERMES: small-scale demonstrator for fast timing
- X-ray multi-photon counter
- MADPIX: CMOS LGAD multi-pixel active demonstrator chip for fast timing

Arcadia Main Demonstrator – chip floorplan

top padframe: auxiliary supply, IR drop measure

512 x 512 pixel sensor bonded on PCB

detail of pixel layout

end of sector: reads and configures one section **sector biasing**: generates I/V biases for sections

periphery:

SPI slave, registers and pixels configuration, 8B/10B encoding, 320 MHz DDR serializers

M. Rolo

Arcadia Main Demonstrator – chip integration

32

- the matrix is composed of 16 identical Sectors (32x512), • each of which contains 16 Double Columns
- triggerless data-driven readout with low-power asynchronous architecture with **clock-less pixel matrix** integrated on a **power-oriented flow**
- power: 10 30 mW

Main demonstrator: chip architecture

- pixel size: 25µm x 25µm. Array core area: 1.28cm x 1.28cm → "side abuttable" and one-direction stitching compatible
- **pixel** electronics: **analog and digital**. In-pixel threshold and data storage
- architecture: **event-driven:** pixels detecting events (charge pulses) send their address and a 8-bit timestamp to the periphery (binary readout)
- low power (as low as 10 mW/cm²) and high event rate (as high as to 100 MHz/cm²)

Arcadia-MD3: peripheral dataflow

- each sector has an independent readout and output link when operating in High-Rate Mode
- sector data is sent out (with 8B/10B encoding) via dedicated 320MHz DDR serializers
- in Low-Rate Mode, the first serializer processes data from all the sections. The other serializers and C-LVDS TXs are powered off, in order to reduce power consumption

high-rate mode

low-rate mode

Front-end board and DAQ

Arcadia front end board

PCB through-hole for matrix Back Side Illumination

The **FPGA**:

- manages the SPI interface
- extracts hits from the 16 input lanes and stores them locally, before they are sent to a PC using the lpbus protocol
- can work both in <u>data-push</u> <u>mode</u> or in <u>triggered mode</u>

Main prototype: charged-particle detection

Davide Falchieri

Arcadia MD3 cosmic data: setup

system mounted in a black box typical HV = - 90 V typical leakage current = 20 μ A threshold = 25 DAC (290 e-)

System very stable:

- 1 week of data taking, unattended, in stable condition
- no specific activity for parameters optimization

R. Santoro

Cluster size

MPV = 4 pixels

more than 90% of clusters with less than 6 fired pixels

matrices with synchronized data

CEPC 2023

Davide Falchieri

Selection criteria:

- 1 cluster per plane
- $\Delta t \leq 10$ clock cycles
- cluster dimension <= 4 in tracking planes (top and bottom)
- **Selected** $\approx 46\%$ of the synchronized events

Davide Falchieri

Residuals

X-ray tube and CT with Arcadia MD3

S. Ciarlantini, C. Bonini, D. Chiappara, P. Giubilato

- X-ray setup (2-10 mA, 40 kV)
- radiography samples and CT reconstruction (stepper motor)
- samples directly placed closed to the backside of Arcadia (BSI)

Pixel / strip test structures

strip flavours:

- 25 µm pitch pixelated
- 25 µm pitch continuous
- 10 µm pixelated

pixel flavours:

- pseudo-matrices of 1x1 and 2x2 mm² (all the sensor nodes are connected in parallel)
 - 50 μm
 - 25 μm
 - 10 μm

FDMAMs (Fully Depleted Monolithic Active Microstrips)

CMOS monolithic strip block and readout electronics (active sensor area: 12800 x 3200 μ m²)

FDMAMs (Fully Depleted Monolithic Active Microstrips)

- preamp: CSA + testpulse injection circuit
- slow shaper branch for charge measurement with externally controlled S&H circuit
- readout:
 - analogue: mux-differential output buffer
 - digital: Wilkinson ADC and serializer
- trigger output:
 - fast shaper branch with fast-OR output

the same readout of the ASTRA chip is integrated into silicon in FDMAMs

FDMAMs (Fully Depleted Monolithic Active Microstrips)

ASTRA FastOR signals provides trigger to the FPGA FPGA sends HOLD signal and then starts readout of analogue MUX

MadPix CMOS LGAD multi-pixel prototype

- some of the HR and p+ wafers implement an extra gain layer added to the sensor
- first small-scale demonstrator 4 x 16 mm²
- 8 matrices (64 pixels each) implementing different sensor and front-end flavours
- 250 x 100 mm² pixel pads
- 64 analogue outputs on each side, rolling shutter of single matrix readout

MadPix CMOS LGAD multi-pixel prototype

- noise and slew-rate characterization with external testpulse
- scans with Sr90 source
- happening now: test-beam for evaluation of timing performances

Davide Falchieri

Arcadia: status and outlook

Characterization:

- extensive **testing** (first test beam foreseen in the next months)
- 3-layer telescope \rightarrow tracking performance measurements
- extended radiation hardness characterization on test structures and on main demonstrators

Design:

 sensors with high timing resolution (particle TOF – upgrade of ALICE experiment at CERN): CMOS sensors with gain layer for fast timing

-	- 70		

Thanks for your time

Backup

X-ray photon counting demonstrator

Davide Falchieri

Sensor characteristics - IV curves

Pixel Current-Voltage curves – comparison with TCAD models

Experimental data acquired for different pixel layouts

Intra-wafer and inter-wafer variations were evaluated

Process parameters in **TCAD simulations** adjusted on experimental results

MD1 characterization: gain and noise

