

Status of SuperKEKB Accelerators

Makoto Tobiyama (KEK Accelerator Laboratory) for SuperKEKB Accelerator Team

Recent Operation(JFY2022)

2

Super

1500₁

(The second seco

L ×10³⁴ (cm⁻²s⁻¹)

0

3

0

delivered recorded

03/03

03/17

int. L/day (fb⁻¹)

LER

HER

......

2022ab Run 1600 - Plan 1000 Plan 1400 Achieved 1200 1000 1000 600 1000 400 200 0

02/27 03/09 03/19 03/29 04/08 04/18 04/28 05/08 05/18 05/28 06/07 06/17

2022

03/31

04/14

04/28

05/12

05/26

06/09

06/23

Vacuum scrubbing machine study 500 ↔ ↓

off-momentum $\beta_y^* = 0.8 \ mm$

diddu

20	022				
Integrated luminosity	Recorded	Date	Delivered	Date	
Shift (pb ⁻¹)	958.1	April 24, swing, 2022	1035.9	April 22, swing, 2022	
1 days (fb ⁻¹)	2.503	April 22, 2022	2.912	June 11, 2022	
7 days (fb ⁻¹)	15.001	April 18 - April 24, 2022	16.599	April 18 - April 24, 2022	

184 fb-1

160 fb-1

Operation Statistics

Physics Run
Machine Tuning
Machine Study
Troubles
Aintenance, Others

Operation statistics 2019 -2022

Beam-Beam Parameter and Specific Luminosity

: physics run

X : HBC - High Bunch Current Study (393 bunches)

0.0565(LER) / 0.0434(HER) at I_{b+} = 1.1 mA

The CW improved luminosity. Data without CW was not the same period as CW data. We will confirm the luminosity gain in the next operation. Also the CW ratio will be optimized by lifetime and luminosity gain.

Machine Parameters

Machine Parameters

	May 22, 2022		June 8, 2022		June 22, 2022 *3		Unit
Ring	LER	HER	LER	HER	LER	HER	
Emittance	4.0	4.6	4.0	4.6	4.0	4.6	nm
Beam Current	744	600	1321	1099	1363	1118	mA
Number of bunches	1565		2249		2249		
Bunch current	0.475	0.383	0.587	0.489	0.606	0.497	mA
Horizontal size σ _x *	17.6	16.6	17.9	16.6	17.9	16.6	μm
Vertical cap sigma Σ _V *	0.250		0.303		0.315		μm *1
Vertical size σ _y *	0.177		0.215		0.223		μm *2
Betatron tunes v_x / v_y	44.525 / 46.589	45.532 / 43.574	44.525 / 46.589	45.532 / 43.573	44.524 / 46.594	45.532 / 43.574	
β _x * / β _y *	80 / 0.8	60 / 0.8	80 / 1.0	60 / 1.0	80 / 1.0	60 / 1.0	mm
Piwinski angle	10.7	12.7	10.7	12.7	10.7	12.7	
Crab waist ratio	80	40	80	40	80	40	%
Beam-Beam ξ _γ	0.0309	0.0219	0.0407	0.0279	0.0398	0.0278	
Specific luminosity	8.74 x 10 ³¹		7.21 x 10 ³¹		6.95 x 10 ³¹		cm ⁻² s ⁻¹ /mA ²
Luminosity	2.49 x 10 ³⁴		4.65 x 10 ³⁴		4.71 x 10 ³⁴		cm ⁻² s ⁻¹

 $^{*1)}$ estimated by luminosity with assuming design bunch length $^{*2)}$ divide *1 by V2 $^{*3)}$ Belle II HV off

6

Long Shutdown 1

Modification during the 1st Long Shutdown (LS1)

- Nonlinear vertical collimator (LER)
 - reduction of impedance and backgrounds 0
- IR radiation shield modification
- reduction of backgrounds 0
- Robust horizontal collimator head (LER)
- replace with carbon-head for horizontal collimator. 0
- Copper-coated vertical collimator head
- countermeasure for "fireball" 0
- reduction of impedance 0
- New beam pipes with wider aperture a injection 0 point (HER)
- RF cavity modification and replacement (LER) 0
 - stable operation and larger beam current

(LS1) upgrade for Injector

- High-speed pulse kicker magnets at the J-ARC and the sector 5 to control the orbit of two bunches independently.
- Large aperture pulse Q magnets at the entrance and exit of J-ARC to optically match the low-emittance e- and e+(primary high charge e-) beams independently.
- Four large aperture pulse Q magnets in the sectors 1-2 to make optical matching for both high energy e- and low-energy e+ beams and to reduce the emittance growth consequently.

Pulse magnets at the entrance of J-ARC

Large-aperture pulse Q magnet in 1-Sector

• Problem of HER injection

- Wall can be an obstacle to injection.
 - A wall should be placed between beam channels for stored beam and injected beam.
 - · Injected beam orbit is too close to the wall.
 - High levels of radiation detected at the injection BPM chamber indicates that the injected beam hits the wall.
 - · It is hard to modify the injection beam orbit.
 - \Rightarrow it is necessary to enlarge the horizontal aperture

of the injection channel.

- What is planned during LS1
 - Replacement of three beam chambers with new ones.
 - Update of injection BPM
 - \Rightarrow More precise injection tuning

TMCI Observation at SuperKEKB

Tune measurement: side band was observed at high bunch current.

We observed TMCI at SuperKEKB when we used a carbon head for one of the vertical collimators. The tune shift was similar to the synchrotron tune and the threshold was 0.85 mA/bunch. (2020)

We control the vertical collimator aperture to keep the tune shift less than half of v_s . The TMCT threshold becomes 1.7 mA/bunch in the LER for the normal operation.

* We replaced the carbon head with tantalum after this experiment.

Tune shift is equivalent to impedance.

Larger circumference (larger T₀) makes larger tune shift.

$$\frac{\Delta\nu_y}{I_b} = -\frac{T_0}{4\pi(E/e)} \sum_i \beta_{yi}\kappa_i(d) \qquad \rightarrow \frac{T_0}{4\pi(E/e)} = 0.2(ps/kV) \quad \text{for SuperKEKB}$$

Reduction of Impedance: Nonlinear Collimator

Beam becomes unstable suddenly at high beam current. Beam loss can lead to severe damage on collimators or final focus magnet (QCS) quench.

Damage of collimator head

Copper coating of collimator head will be effective if different sublimation point is problem.

Vertical Collimator

TOP side

I think the colours are similar.

BOTTOM side

bottom

There are many dusts.

We never expected the collimator damage before the commissioning.

Synchrotron Radiation at Strong Sextupole Region in HER

BPMs, Quadrupoles, and Sextupoles

BPM is fixed at quadrupole magnet and displacement monitor measures relative deviation (horizontal and vertical) between the BPM and the sextupole magnet.

BPM and Quadrupole Magnet

The beam pipe (BPM) is fixed to the quadrupole magnet.

Crab Sextupole in the HER

Gap sensor measures $(\Delta x, \Delta y)$ between BPM and sextupole. Relation between BPM and quad. does not change. (see left fig.)

...............

BPM

Quad. moves like yaw and horizontal shift if BPM pushes quad.

Yao, Mu-Lee

Deformation

International Task Force (ITF) for SuperKEKB

61 researchers are joined to the ITF. (26 researchers from foreign institutes ~43 %) FCC-ee, CEPC, EIC, Super-Tau-Charm

Find a realistic path to achieve 10^{35} cm⁻²s⁻¹ in the post LS1 (1st long shutdown since mid. of 2022). Find ideas to achieve $6x10^{35}$ cm⁻²s⁻¹ after LS2 with a view to major modifications.

ITF is organized under the B-Factory promotion office at KEK. A) KEK, B) CERN, C) UNIROME1, D) IHEP

 $10^{35} \text{ cm}^{-2}\text{s}^{-1} = 1 \text{ SuperKEKB}$

We attempt to improve luminosity

Toward 2.4 x 10³⁵ cm⁻²s⁻¹

2500

2.75 A / 2.2 A

L=2.4×10³⁵ β_{v}^{*} =0.6 mm

1500

 $I_{b+}I_{b-}n_{b}$ (mA²)

28

2×10³⁵

2000

Super KEKB

12

10

8

6

4

2

0^L

5×10³⁴

500

Specific luminosity $\times 10^{31}$ (cm⁻²s⁻¹/mA²)

The first milestone after LS1 is 10³⁵ cm⁻²s⁻¹.

10³⁵

1000

Recent status

- HER new injection chamber has been installed successfully.
- OHO NLC elements, such as skew sextupoles, new vacuum chambers, lead radiation shield after vertical collimator have been installed successfully. OHO concrete radiation shield have been restored. Additional concreate shield will be installed soon.
- QCS-L (backward) has been restored. L-side magnets, vacuum chambers are also restored.
- First trial of QCS-R (forward) insertion failed.
 - Found (not negligible) interference between RVC and cable support of VXD. Also seems to damage RVC structure.
 - DESY group has quickly prepared modified RVC gear not to interfere cable support.
 - Up to now, operating ring in December will not be easy (almost impossible).

Summary

- Peak luminosity of 4.7x10³⁴cm⁻²s⁻¹ has been achieved
- Demonstrated stable operation over 1A in the LER (with smaller bunch current less than 0.7mA/bunch)
- Sudden beam loss is serious challenge to increase luminosity and beam current, up to now.

Many other challenges:

- Vertical beam size blowup in LER
- Beam line deformation with HER beam current
- Shorter beam lifetime; both dynamic aperture and physical aperture (beam collimators), need to clarify the effect of crab waist.
- Injection efficiency, long-term stability of the injector.
- Several upgrade items during long shutdown 1.
- International Task Force for SuperKEKB upgrade
 - Beam Tuning, Collective Effect, Beam Injection, Sudden Beam Loss, IR Upgrade subgroups are actively on-going.