

CEPC Linac injector design status

CEPC International Workshop 2023, 23-27. Oct. 2023

Cai MENG

Institute of High Energy Physics

Content

Introduction of the CEPC Linac

2 Physics design status of the CEPC Linac

3 Summary

1

CEPC LINAC – Cai MENG

Introduction: CEPC Layout

- CEPC as a Higgs (ttbar, H, W, Z) Factory
 - Linac, 30GeV, 1.8km
 - Full energy Booster, 100km
 - Collider, 100 km
 - Transport lines
- Linac design
 - Meet requirements
 - High availability
 - ♦ 10%~15% accelerating units backup
 - Reserve upgrade potential

 $L_{\text{int}} = \int_{0}^{T} L(t)dt = L_{max} \quad T_{s} \quad \eta_{PDT}$ $\eta_{PDT} = \eta_{HA} \quad \eta_{BE} \quad \eta_{CE}$ $\eta_{PDT}: \text{Physics data taking efficiency}$ $\eta_{HA}: \text{Hardware availability}$ $\eta_{BE}: \text{Beam effectiveness}$ $\eta_{CE}: \text{Collision effectiveness}$

Introduction: Linac parameters

• CEPC Linac is a high energy electron and positron linear accelerator

Parameter	Symbol	Unit	Baseline
Energy	E _{e-} /E _{e+}	GeV	30
Repetition rate	f _{rep}	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		nC	1.5 (3)
Energy spread	σ_{E}		1.5×10^{-3}
Emittance	٤ _r	nm	6.5
Switch time for electron and positron		S	3.0

Introduction: Why is 30-GeV needed?

- The maximum energy of booster is 180GeV and circumference is 100 km
 - Large circumference & Low injection energy \rightarrow Low magnetic field
 - design difficulty in magnet (*field*) and power supply (*stability*)
 - Large extraction energy \rightarrow Large field range
 - design difficulty in magnet (*excitation efficiency*) and power supply (*power*)
- Increasing the energy of the Linac is the easiest way and total-cost-saving solution

Magnet		Low injection energy			Max. Extraction energy	Cont
		10GeV	20GeV	30GeV	180GeV	COST
	CT Air-core coil	Yes	Yes	Yes	No	Very high
iron-corn	oriented silicon steel sheet	No	Yes	Yes	Yes	high
magnet	Non-oriented silicon steel sheet	No	No	Yes	Yes	low

Introduction: How to achieve 30-GeV

- S-band accelerating structure@ low energy part and high bunch charge part
- C-band accelerating structure @TAS (1.1GeV→30GeV)
 - Cost saving (Only consider the RF system and Power Source system)
 - ◆ S-band: 44.6 Million CNY/GeV @ 80 MW klystron

> 1 klystron drive 4 accelerating structure, 22 MV/m

- C-band: 42.9 Million CNY/GeV @ 50 MW klystron [Baseline scheme]
 - > 1 klystron drive 2 accelerating structure, 40 MV/m
- ◆ C-band: 27.3 Million CNY/GeV @ 80 MW klystron
 - > 1 klystron drive 4 accelerating structure , 40 MV/m
- Higher gradient \rightarrow Shorter linac tunnel length \rightarrow cost saving
- Small aperture → Strong wakefield

Introduction: Layout

• The tunnel is 1.8km

- Linac is about 1.6 km
- 200 m as reserved space

CEPC LINAC – Cai MENG

Basic consideration: Bunch length

- Energy spread is determined by Wakefield and bunch length of TAS
 - **400** μm

CEPO

CEP

- Bunch compressor
 - Chicane-type
 - 1.0~1.2 mm → 0.4 mm

Circular Electron

Positron Collider

Electron Linac: Acceleration section

- ESBS
 - Thermionic cathode electron gun
 - Two subharmonic buncher
- FAS:50MeV→1.1GeV
 - 5+1(redundancy) S-band klystron
 - 1 klystron \rightarrow 4 accelerating structures @22MV/m
- EBTL
 - Vertical separation
 - Local achromatic design
 - Emittance growth (T366 and U3666)
 - In the design, energy spread is 0.2%
- TAS: 1.1GeV→30GeV
 - 215+21(redundancy) C-band klystron
 - 1 klystron \rightarrow 2 accelerating structures@40MV/m
 - 9% backups

Electron Linac: Beam dynamics results

• Simulation results(including Wakefield & CSR)

Parameter		Malua	Simulated			
	Unit	value	Electron			
Beam energy	GeV	30	30.56	30.06		
Bunch charge	nC	1.5	1.5	3.0		
Energy spread	10-3	1.5	0.76	1.34		
Emittance(x/y)	nm	6.5	1.38/1.36	1.46/1.75		
Bunch length (RMS)	mm	/	0.4	0.4		

Positron Linac: FAS for positron production

• Acceleration: 50MeV→4GeV @10nC

- 18+3(redundancy) S-band klystron
 - 1 klystron \rightarrow 4 accelerating structures

Charge

10.2

nch ch

350 9.0

CEPC LINAC – Cai MENG

- Gradient: 22MV/m
- Simulation results
 - Energy: 4GeV

100

95

90

(pern 82

80

Ë 75

70-

65.

Energy spread: 0.63%

150

Circular Electron

Positron Collider

High bunch charge Linac

- High Energy Photon Source Linac
 - Bunch charge: 7nC
 - Energy: 500MeV

 ϵ /charge (10 mm-mrad/nC) ϵ /charge (20 mm-mrad/nC)

CEPC LINAC – Cai MENG

Positron Linac: SAS

- Acceleration: $200 \text{MeV} \rightarrow 1.1 \text{GeV}$
 - 8+1(redundancy) S-band klystron
 - 1 klystron \rightarrow 2 accelerating structures
 - ♦ 10 Larger aperture S-band accelerating structure@22MV/mm
 - 8 normal S-band accelerating structure@27MV/m
 - HEPS: 26MV/m with beam (limit by power source)
- Transverse focusing
 - Triplet quadrupoles are outside each accelerating structure
- Simulation results
 - Energy spread: 0.4%
 - Bunch charge: ~4.5nC
 - Normalized rms Emittance: 2500mm⁻mrad

Circular Electron

Positron Collider

Positron Linac: TAS

• Simulation results(including Wakefield & CSR)

Daramatar	Linit	Value	Simulated			
Parameter	Unit	value	Positron			
Beam energy	GeV	30	30.50	30.01		
Repetition rate	Hz	100	/			
Bunch charge	nC	1.5	1.5	3.0		
Energy spread	10 ⁻³	1.5	1.33	2.2		
Emittance(x/y)	nm	6.5	3.37/1.68	4.01/1.71		
Bunch length (RMS)	mm	/	0.4	0.4		

CEPC LINAC – Cai MENG

2023年10月24日

Error study: simulation results

- According to simulation, the Linac with errors can meet the requirements @ 1.5nC
 - Misalignment errors, gradient errors, phase errors

Parameter		Unit Value		Simulated				
				Electron		Positron		
Beam energy		GeV	30	30.5	30.0	30.5	30.0	
Bunch charge		nC	1.5	1.5	3.0	1.5	3.0	
Energy spread	W/O error	×10 ⁻³	1.5	0.76	1.34	1.33	2.2	
	W/ error			0.75±0.14	1.45±0.13	1.33±0.01	2.2±0.01	
Energy jitter		×10 ⁻³	1.0	0.22	0.24	0.21	0.22	
Emittance(H/V)	W/O error		6.5	1.38 1.36	1.46 1.75	3.37 1.68	4.01 1.71	
	W/ error	nm		1.41±0.07 1.40±0.06	2.11±0.30 2.41±0.62	3.39±0.08 1.69±0.03	5.33±1.63 2.36±0.56	

PWFA injector

Detailed in talk of Prof. D. Z. Li

• A 30 GeV injector based on Plasma WakeField Acceleration (PWFA) is currently being designed.

CEPC LINAC – Cai MENG

17

PWFA injector

- An external injected drive-witness bunch pair merge system with femtosecond timescale jitter
 - The two-electron beam with different energy can be merge by one common dipole
 - High order isochronous merge system
- Main Linac acceleration

Circular Electron

Positron Collider

A high energy FEL

A high energy FEL

- Beam
 - 25GeV
 - Slice energy spread 2 MeV
- SASE-FEL
 - 93keV

	Unit	tt	Higgs	W	Ζ
Injection interval for collision	S	32	20	36	71
Linac time for FEL	S	28	14	20	3
Duty ratio	%	88	70	56	4

@Dou Wang

Summary

- The Linac energy is designed to 30 GeV to ease the booster magnet design difficulties (low field at injection energy and large magnetic field range) and save the total cost.
- The C-band accelerating structure is used from 1.1 GeV to 30 GeV and is the main acceleration part.
- The lattice design and dynamic simulation have been finished, the design can meet the requirements.
- During the EDR stage, double-bunch acceleration and availability analysis will be further study.
- As the high energy injector, the study of PWFA and high energy FEL is under going.

Thank you for your attention!

Gircular Electron