

The 2023 International Workshop on the High Energy

Circular Electron Positron Collider

October 23-27, 2023, Nanjing China

Historical view and perspective for SRF applications

Carlo Pagani

carlo.pagani@mi.infn.it

SCRF from HEPL to the TESLA effort

Largest Research Projects bet on SRF

TRISTAN at **KEK**

LEP2 at CERN

CEBAF at **TJNAF**

First Installed Cryomodules for $\beta = 1$

TRISTAN SRF from KEK to MHI

KEK 1981

.

213

1

284 513^{\$}

213

Cavity #

Meas. date

f₀ (MHz)

 Q_{15D}^{1}

 $(\times 10^{11})$

Q₀ at low

field (×109)

E_{acc.max}

(MV/m)

120

Fig. 1 Set up of the

17a

3.33

2.8

13.5

MHI 1995

Successful Prototypes in 1987

Proceedings of The Third Workshop on RF Superconductivity, Argonne National Laboratory, Illinois, USA

STATUS OF TRISTAN SUPERCONDUCTING RF PROGRAM

S. Noguchi, K. Akai, M. Arinaga, K. Asano, T. Furuya K. Hara, K. Hosoyama, A. Kabe, Yuji Kojima, Yuzo Kojima S. Mitsunobu, H. Nakai, T. Nakazato*, T. Ogitsu, K. Saito U. Sakamoto T. Suzuki and T. Tajima

KEK, National Laboratory for High Energy Physics

First SFR Industrial Production: Japan 1988 – 1995

The first mass-production of SRF Cavities in the world SRF Cavity for TRISTAN at KEK Bulk-Nb - 508MHz - 5-Cell Cavity 32 SRF cavities were fabricated by

Mitsubishi and operated in TRISTAN

SRF Operation Experience 1988-1995

Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France

Period		Numbe	r of cav.	Total Vc	Eacc(ave.)	Energy	Current	Phys.Run
		(at 4K) (operated)	(MV)	(MV/m)	(GeV)	(mA)	(days)
1988	Nov-Dec	16	16	105-109	4.4-4.6	30.0	10	18
1989	Jan-Mar	16	14	82-88	4.0-4.2	30.4	9	49
	May-Jun	14	14	87	4.2	30.4	10	17
	Jun-Jul	16	16	105	4.4	30.7	10	37
	Nov-Dec	30	28-29	190-200	4.6-4.7	32.0	12	25
1990	Feb-Mar	32	31	160	3.5	29.0	12	37
	Apr-May	32	30-31	160	3.5-3.6	29.0	12	25
	May-Jun	32	28-30	150-160	3.6	29.0	13	39
	July	30	25	130	3.5	29.0	13	31
1991	Jan-Jul	32	29-30	140-145	3.3	29.0	9	36
	Oct-Dec	30	26	140	3.6	29.0	13	35
1992	Feb-Mar	26	23	125	3.6	29.0	12	31
	Apr-Jun	28	23-25	135-140	3.8	29.0	13	77
	Oct-Dec	32	25-31	150-170	3.3-4.1	28.8-29.9	13	66
1993	Feb-Apr	30-32	28-32	145	3.2	29.0	13	48
	May-Jun	32	28-32	145	3.2	29.0	13	48
	Oct-Dec	32	32	145	3.0	29.0	13	25
1994	Feb-Mar	32	32	155	3.2	29.0	15	38
	Apr-May	30	27	155	3.8	29.0	15	57
	June	30	30	160	3.6	29.0	15	26
	Oct-Dec	32	32	175	3.6	29.0	15	53
1995	Mar-May	32	32	175	3.6	29.0	15	53

Table I, Summary of the operation of SRF Cavities in TRISTAN-MR.

Conclusions

Total accumulated time of cavities at 4.4 K : 33000 hours

13 cool down cycles

A system of thirty-two superconducting RF cavities was operated for seven years without serious problems. Operability and stability of the performance in an existing storage ring were demonstrated. There were several hardware troubles, but they were not essential and solved. Although it looks special in TRISTAN for the moment, a gas discharge triggered by synchrotron radiation and developed by adsorbed gases caused many RF trips. Fortunately with an enough ring voltage and an RF recovering procedure, this trip was acceptable in TRISTAN, but a reduction of synchrotron radiation as well as adsorbed gases is essential for a longer operation or a higher current application.

The LEP-1 RF System

LEP2 at CERN: First SRF Cavity Prototype in 1985

Fig. 5 Q value of the cavity as a function of the accelerating field (T = 4.2 K).

Fig. 4 Accelerating field at $Q = 1 \cdot 10^9$ as a function of the processing time (T = 4.2 K).

for temperature mapping.

cavity for LEP in its vertical support. Visible in

front is the arm carrying the resistor thermometers

Outstanding Results with Nb on Copper in 1987

Third Workshop on RF Superconductivity, Argonne National Laboratory, Illinois, USA

Nb on Cu wins the competition for LEP2 in 1989

LEP2 Cavities move to Industry in 1990

Fig. 2 - Chemical plant for cavity treatment

Gradient improvement with time

Proceedings of the 1999 Workshop on RF Superconductivity, La Fonda Hotel, Santa Fe, New Mexico, USA

	i iti system
Cu cavities	48
Klystrons for Cu system	8
SC cavities	288
Klystrons for SC system	36
Maximum circumferential voltage	3560 MV

 Table 2: Present configuration of the LEP RF system

In order to reach the highest beam energy possible the voltage reserve is at the very minimum. This is demonstrated on the example of running at 100 GeV, calculated for a quantum lifetime of 24 h:

Synchrotron radiation loss:	2923 MV
Required for 24 h quantum lifetime:	3200 MV
With reserve for one HV trip	3390 MV
Typically available:	3420 MV

Fig. 7: Accelerating gradients at the beginning and at the end of 1999 operation

LEP 2 Energy Evolution

Proceedings of the 2001 Particle Accelerator Conference, Chicago

ULTIMATE PERFORMANCE OF THE LEP RF SYSTEM

Figure 1.: Beam energy, available and nominal RF voltage from 1995 until 2000.

Table 1 The LEP RF system in 2000		
number of Cu cavities	56	
accelerating voltage per cavity	2.5 MV	
active length of 4-cell cavity	1.7 m	
number of solid Nb SC cavities	16	
design gradient	5 MV/m	
number of sputtered Nb SC cavities	272	
design gradient	6 MV/m	
number of klystrons (1/1.3 MW each)	44	

A000

The circumferential voltage U_o required to replace the synchrotron radiation losses per turn at a beam energy E is given approximately by:

 $U_0[eV] = 28.6 * E^4[GeV]$

At 104.5 GeV the two counter rotating beams lose 3.4 GeV per turn, corresponding to 3.2 % of their energy.

Gradient distribution for different Energies

RF unit voltage in 1998,1999 & 2000

Critical Trip Rate at Maximum Energy

The 10th Workshop on RF Superconductivity, 2001, Tsukuba, Japan

OPERATING EXPERIENCE WITH THE LEP2 SUPERCONDUCTING RF SYSTEM

Figure 13: RF voltage distribution on 6th Sept. 2000 compared to maximum levels gained during conditioning.

CEBAF at TJNAF from 1996

A pair of 5-cell 1.5 GHz cavities (from Cornell)

Aerial view of the CEBAF site

CEBAF important achievements

- First large recirculating linac
- Large cryogenic plant at 2 K
- R&D on fabrication and treatments for Nb
- Large plants for preparation and RF tests
- Great experience on SRF linac operation
- Excellent SRF reliability demonstrated
- Set the background for SNS

SRF Test Infrastructure at Jefferson Lab

- Processing and conditioning improve cavity performances, when not limited by material defects (hard quench)
- Field emission moves to higher field
- Accelerating Field improves with time
- 2 K operation very reliable and well understood
- All ancillaries perform quite well
- Maximum energy and beam current above the design values
- CEBAF performances finally limited by the installed cryo-power and RF-power

A great success for CEBAF

1990: and so... TESLA for next Linear Collider

Basic goals to be reached

- Increase gradient by a factor of 5 (Physical limit for Nb at ~ 50 MV/m)
- Reduce cost per MV by a factor 20 (New cryomodule concept and Industrialization)
- Make possible pulsed operation (Combine SRF and mechanical engineering)

Advantages of SRF vs NC

- Higher conversion efficiency: more beam power for less plug power consumption
- Lower RF frequency:

relaxed tolerances and smaller emittance dilution

The path to a new SRF standard with BCP

From BCP to TESLA TDR and EuXFEL

Electro-Polishing (EP) from KEK (Kenji Saito) Improves surface and cleaning

In-Situ Baking (120-140 °C) from CEA-Saclay (B. Visentin) Cures Q-drop at High Field

10 years of experience with TTF before EuXFEL

EuXFEL, VT of 800 cavities «as received»

EuXFEL cavities: as received Usable Gradien

Include operations spec

- $Q_0 \ge 1 \times 10^{10}$
- FE threshold (X-ray)

→ Usable Gradient

		Max	Usable
Average	MV/m	31.4	27.7
RMS	MV/m	6.8	7.2
Median (50%)	MV/m	32.5	28.7
Yield ≥20 MV/m		92%	86%
Yield ≥26 MV/m		85%	66%

EuXFEL cavities: final performance: Eacc

Total after 313 retreatments performed on 237 of the 831 cavities

After:

E max 33.0 ± 4.8 [MV/m] (RI): E max 34.7 ± 4.4 [MV/m]) (EZ): E max 31.5 ± 4.9 [MV/m])

Before: E usable 27.7 ± 7.2 [MV/m] (RI): E usable 29.0 ± 7.3 [MV/m]) (EZ): E usable 26.4 ± 6.6 [MV/m])

After:

E usable 29.8 ± 5.1 [MV/m] (RI): E usable 31.2 ± 5.2 [MV/m]) (EZ): E usable 28.6 ± 4.8 [MV/m])

EuXFEL cavities: final performance: Q_0

Total after 313 retreatments performed on 237 of the 831 cavities

Q0 @ 4 MV/m 2.15 \pm 0.32 [1.10¹⁰] (RI): Q0 @ 4 MV/m $2.11 \pm 0.32 [1.10^{10}]$) (EZ): Q0 @ 4 MV/m 2.18 ± 0.32 [1.10¹⁰])

After:

Q0 @ 4 MV/m 2.23 \pm 0.34 [1.10¹⁰] (RI): Q0 @ 4 MV/m 2.21 ± 0.34 [1.10¹⁰]) $(EZ): Q0 @ 4 MV/m 2.26 \pm 0.33 [1.10^{10}])$

Q0 @ 23.6 MV/m 1.31 ± 0.26 [1.10¹⁰] (RI): Q0 @ 23.6 MV/m 1.29 ± 0.24 [1.10¹⁰]) $(EZ): Q0 @ 23.6 MV/m 1.34 \pm 0.28 [1.10^{10}])$

After:

Q0 @ 23.6 MV/m 1.37 \pm 0.25 [1.10¹⁰] (RI): Q0 @ 23.6 MV/m 1.34 ± 0.22 [1·10¹⁰]) (EZ): Q0 @ 23.6 MV/m 1.41 ± 0.26 [1.10¹⁰])

100

90

80

70

60

30

20

10

50 40 40 Xield (%)

EuXFEL: Usable Installed Voltage

Some of the elliptical (TM) cavities

for electrons, and protons (ions) with $b \ge 0.5$

TRASCO 704 MHz (ß=0.47)

RHIC e cooling 704 MHz

FLASH/XFEL 3.9 GHz

S-DALINAC 3 GHz

CEBAF 1.5 GHz

HEPL 1.3 GHz

CESR 500 MHz

SNS 805 MHz (ß=0.61&0.81)

KEK-B 500 MHz

HERA 500 MHz

LEP 352 MHz Nb bulk prototype

ESS 704 MHz (ß=0.67)

PIP-II 650 MHz (ß=0.61)

FCCee 800 MHz

CEPC 650 MHz

2023 CEPC Int. Workshop Nanjing, 24 October 2023

Expected Q₀ & G in new Projects

A Picture from Rongli Geng, 28 Dec. 2018

R&D results vs time & Large Machines

Flow Chard of one β =0.61 ESS Cavity

New CW XFELs from TESLA Technology

LCLS-II: the present State of the Art wt N-doping

VFN

LCLS-II Technical Parameters

Performance Measure	Threshold	Objective			
Variable gap undulators	2 (soft and hard x-ray)	2 (soft and hard x-ray)			
Superconducting linac-based FEL system					
Superconducting linac electron beam energy	3.5 GeV	≥4 GeV			
Electron bunch repetition rate	93 kHz	929 kHz			
Superconducting linac charge per bunch	0.02 nC	0.1 nC			
Photon beam energy range	250–3,800 eV	200–5,000 eV			
High repetition rate capable end stations	≥ 1	≥2			
FEL photon quantity (10 ⁻³ BW) per bunch	5x10 ⁸ (10x spontaneous) @2,500 eV	> 10 ¹¹ @ 3,800 eV			
Normal conducting linac-based system					
Normal conducting linac electron beam energy	13.6 GeV	15 GeV			
Electron bunch repetition rate	120 Hz	120 Hz			
Normal conducting linac charge per bunch	0.1 nC	0.25 nC			
Photon beam energy range	1–15 keV	1–25k eV			
Low repetition rate capable end stations	≥2	≥ 3			
FEL photon quantity (10 ⁻³ BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV			

D. Gonnella @ LINAC2022

- LCLS-II constructed 373 nitrogen-doped 1.3 GHz cavities
- All cavities were produced with the 2/6 nitrogen-doping protocol
- Significant procedural improvements were made along the way to achieve reliable good performance

(flux expulsion, fabrication techniques)

Sufficient cool downs for High Q₀ achieved at SLAC

 What we really care about is the cool down gradient not the

rate – faster usually means larger gradients

- Two installed CMs have temperature sensors located on the cavity cells
- Gradients from the SLAC fast cool down and testing at FNAL could be compared to gauge how "successful" we were
- Non-optimized cool down results in lower ∆T than achieved at the test stands
- Fast cool down process produces similar gradients to FNAL CMTF
- We are now able to routinely achieve similar temperature gradients across the cavities to what was achieved during CM testing

Overall SRF Commissioning Status

- Cryomodule commissioning has been very successful
- 97% of installed cavities fully operational (planned 94%)
- Majority of testing included an admin limit of 18 MV/m
- Total commissioned voltage exceeds design by >20%

Total Commissioned Cavity Voltage: 4.9 GV

D. Gonnella @ SRF2023

Cavity Limitations

D. Gonnella @ SRF2023

- The majority of cavities were limited by quench below the admin limit of 18 MV/m
 - It is suspected that many of these are limited by multipacting which could be processed
- About one-quarter of the cavities reached the admin limit
- About one-fifth of the cavities were limited by field emission
- The remaining 2% of cavities are unable to be used:
 - 2 cavities: poor contact between coupler warm and cold ends
 - 4 cavities: tuners not functioning properly
 - It is expected that all 6 of these cavities could be repaired *in situ* at room temperature

The Q₀ that was promised...

- Due to the strong coupling in the CM, Q₀ is measured cryogenically
- Full CM average Q₀ results look promising
- Across the linac an average of 2.8x10¹⁰ has been observed, exceeding the spec of 2.7x10¹⁰
- Low performers can likely be improved by additional CM degaussing

Demonstrates High Q_0 in an installed linac for the first time

D. Gonnella @ SRF2023

High-Q/High-gradient R&D outcome

- LCLS-II-HE incorporates the state-of-the art processing to achieve high-Q and high-gradient
- In average, cavities exceed both Q-factor and accelerating gradient

Industrialization of the process

- Technology transfer to industry was successful
 - Constant communication with vendor and inperson oversight by project SMEs
- Major issues
 - He vessel bellows damage and non-conformities
 - Higher yield loss than anticipated for eddy current scanning qualification of raw Nb material

Outlook on R&D for High Q₀ & High G

Reference for HighQ/HighG

Final EP cold: best surface finishing High temperature annealing

from 800 °C to 900 °C

Final treatment for performances

120 °C: baseline Two-step baking Mid-T baking Nitrogen doping

 E_{acc} (MV/m)

Two step baking High G, ILC driven

e⁺e⁻ Colliders: the three competitors need SRF

2023 CEPC Int. Workshop Nanjing, 24 October 2023

Carlo Pagani