

Status of 400MHz 1MW FCCee Two-Stages Multibeam Klystron

Zaib Un Nisa for CERN & ULAN HE klystron team

RF power sources for particle accelerators

- Large scale particle accelerators can be operated with vast diversity of RF power sources.
- The actual choice of the RF source type will be driven by practical consideration : tunnel integration, spatial and peak power density, cost/W and efficiency.

CW, Pulsed. Klystron, Gyro-devices.

The accelerators technology is very diverse and could require the RF signals in a wide range of the frequencies (few 100 MHz – 12 GHz), peak power levels (few 100 kW – 100 MW) and pulse lengths (CW -100ns). The **klystron** amplifiers technology is the one that covers almost all RF frequency/power demands of the modern accelerators.

Grid power required for the large-scale HEP Accelerators

220

200

120

100

0.4

State of the art 2020 and before

0.5

To operate FCC_{ee}, **100 MW** Continues Wave RF power is needed to accelerate particles and to compensate for the energy lost into synchrotron radiation.

*100 MW, CW ~100 000 Microwave ovens running 24/7.

Improving klystron RF efficiency from 65% in the best existing commercial devices to 85% in the new HE tubes will:

0.6

Save 32.2 MWh -> 253 GWh (7000h/year) -> 2.53TWh over 10Y.

0.7

RF power source efficiency

400 MHz, 1 MW klystron for FCC

0.8

 Reduce maintenance cost and power consumption of power converters and cooling system (environmental impact).

HEK project target

2026/27

0.9

 FCC_{ee} (Z) accelerator tunnel integration

- 1. Each Klystron should deliver 1MW @ 400MHz.
- 2. Preferably, klystron should be placed vertically in the tunnel.
- 3. The total length of Klystron should be about 3m.
- 4. The efficiency of Klystron is targeted at 80%.

High efficiency klystrons projects at CERN

High Efficiency klystrons activity was initiated at CERN in 2014. In

2021 it was transformed into a CERN's project.

Objectives: Development, design, fabrication and testing of the new HE klystrons for application in various particle accelerators.

Task 1: Design & simulations

- Maintenance and distribution of the CERN made klystron code KlyC.
- High level expertise in using commercial tools like CST PIC, HFSS etc.

Task 2: HE LHC 400 MHz klystron

- Retrofit upgrade of Thales klystron (60% to 70%) in close collaboration with industry.
- A base line option for HL-LHC.

Task 3: Novel two-stage klystron technology with 80%+ RF production efficiency

- Design, fabrication and testing of the 400 MHz 1MW CW klystron for FCC in collaboration with industry.
- Promote this new technology towards CLIC, ILC and Muon_C.

Task 4: High efficiency X-band pulsed klystrons in the power range 10-50MW

- Strong Collaboration with industry (Canon, CPI and Thales).
- Important for multiple projects (CompactLight, DEFT, EUPRAXIA etc.).
- Great show case for CERN's technology and contribution to worldwide society.

6

Selected topic

400 MHz accelerator units for different poles of FCC_{ee} operation stages

- Up to 132 klystrons (H-pole) will be operated, providing total RF power of **105 MW**.
- To reduce investment cost, the individual/unique tube shall be efficient in a wide RF power range from 600 kW to 1 MW

Two-Stage Multi Beam Klystron (TS MBK) technology in UHF/L-band

Specific features

- 1. Bunching at a low voltage (high perveance). Very compact RF bunching circuit.
- 2. Bunched beam acceleration and cooling (reducing $\Delta p/p$) along the short DC voltage post-accelerating gap.
- 3. Final power extraction from high voltage (low perveance) beam. **High efficiency.**

Additional advantages:

- For pulsed tubes, the second HV stage can be operated in DC mode. Thus, simplifying the modulator topology. (cost/volume) and increasing the modulator efficiency.
- 2. Simplified feedback for the first stage pulsed voltage. Improved klystron RF phase and amplitude stability.

Drawbacks:

- 1. Reflected electrons from the output cavity and collector shall be **avoided at any cost**.
- 2. RF radiation into DC gap must be sealed.
- 3. Requires special HV isolated RF feedthrough to inject RF signal into input cavity.
- 4. Large bore (\emptyset 400mm) ceramic insulator on the 2nd stage.

400 MHz HE Two-Stages MBK for FCC_{ee}. Performance summary

Featured:

- Very efficient. 86% @ Z,W,H and 83% @ ttbar2.
- **Compact**. Total length <3m.
- Low Voltage. Up to 64kV @ 1 MW.
- High RF power gain. 43dB @ 1MW.
- Broadband. 3.5 MHz @ -1dB.
- Robust. Can handle mismatch up to -15dB.

Project status @ CERN

- ✓ RF circuit
- ✓ Collector
- ✓ Cathode
- ✓ Solenoid
- ✓ Special High Voltage isolated RF feedthrough (prototype).
- Integration
- □ Thermal/mechanical analysis

FCC TS 400MHz, 1 MW MBK KlyC design

FCCTSMBK10_baseline_02_23 - final - V2 -0.2

-0.2

KlyC CGUN	Beam Para. eff. optimizer	Accuracy Setting plot setting	Conv. OL	FigOff FigOn GI	F of V Itxt output	ut cores <mark>4</mark> 🔻			
New	Beam Voltage (kV) 10.000	Space Charge Field Order 8 Simulation results summary							
Open	Beam Current (A) 1.600	Division Number in λ_e-	Pout=	843.2 kW Gain=	41.78 dB	IVal(kV) phi(d)/E kV	100		
Save	Outer Radius (mm) 8.100	Division Number in RF 128	Eff.RF=	549.7 % Eff.Bl=	527 %	0.7755 0.	.0{ Prog		
Save as	Inner Radius (mm) 0.000	Max Iterations 1000	Re.RF=	1 584e-05 Re.El=	6.621e-05	2.5981 0.3	3' On		
Simulate	Tube Radius (mm) 10.800	Iteration Residual Limit 0.0001		1.765	1.898	4.4636 0. 7.5589 1	.5 ¹ 0(
GS EM	Beam Number 10	Iteration Relaxation 0.5	ve/c min=	-0.1048 Gamal=	0.3326	50.0000			
Power Ramp 10	Layer Number 4	Excitation source	Ve/0.11111-	-0.1046 [Oama]=	0.3320	21.5177 2.4	42 Off		
Image C1	Reflection from output	Pin (W) degree chirp	Successful	iteration Yes pha.s-	-25.46	75.0527 12.	7t Sweep		
f (MHz) 400.800	amp 0 degree 0	56.000 360.000 0.000	Reflected el	ectrons No Tcpu=	5.257 min		RunAll		
modulation donth for harmonics1#									
$\begin{array}{c} 1.8 \\ 1.8 \\ 1.6 \\ 1.4 \\ \hline \\ 1.2 \\ \hline \\ 1.4 \\ \hline \\ 1.2 \\ 0 \\ 0 \\ 1.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1125mm 1375mm 1625mm 1875mm 1875mm 400 600 800 10 100 100 100 100 100 100 100 100 100 100		0.8 0.6 0.4 0.2 -0.2 0 0	200 400 600	D 800 1000	1200 1400	1600		
2 200	z position /mm		0	200 400 000 Z	position /mm	1200 1400	1000		

- 🗆 X

Power Gain Curve

Bandwidth Curve

- 1. 10.75 kV for the first stage, 64.5 kV for the second stage, oil tank is not necessary for HV insulation.
- 2. -1dB bandwidth is over 3.5MHz.
- 3. Klystron could deliver 1.0 MW output power at 400MHz, with circuit length of 1.575 m. No instability in RF circuit were found.

TS MBK Solenoid Design

Magnetic field: Bz=5.5XBrillouin (0.095 T) for nonconvergent beam optic system.

Beam envelop along the beam tunnel. Gap length is optimized to minimize the beam scalloping before and after DC accelerating gap.

3D TRK & PIC (CST) beam optic simulations

- 3D Magnetic field is imported;
- 3D effects brought by the MB topology is fully considered
- Tube is stabilized during 2000ns simulation time in PIC.
- Peak surface power losses of 500W/cm² were set as a target following industrial data.

TRK

Without RF

With RF

TS-Collector design for Z (1000kW), WH (850kW), ttbar (700 kW)

	Voltage	Current	dP/dS (max)
ttbar	56.4 kV	14.56 A	211 W/cm ²
WH	60 kV	16 A	258 W/cm ²
Z	64.5 kV	17.8 A	285 W/cm ²

- The collector has been designed to contain power loss density < 300 W/cm² for DC operation
- The interface taper section has been designed keeping in view the pole piece location and margin for cooling channels

Full 3D PIC simulation of FCC 400 MHz, CW, 10 beams TS MBK (@1MW, 86% efficiency)

100000 Particles energy animation (CST 3D PIC) 90000 80000 Collector (at ground) 70000 **Output cavity** 60000 · DC HV (53.75kV) accelerating gap 50000 40000 30000 -20000 -10000 -0.0616 High voltage (64.5 kV) beam Low voltage (10.75 kV) beam CST E-field in a gap Spectra of RF power radiation into DC gap

- No reflected electrons were observed at any operating voltage and/or RF power.
- Special collector design concept with low energy electrons filtering.
- RF radiation into DC gap is suppressed using set of 3 harmonic resonant rejectors (from 8.5 kW down to 2W).
- Cathode current density is 0.9 A/cm² @1 MW -> life-time > 100 000 hours.

HV isolated RF feed-through with strip-line topology

HVRFT is a special device which has to protect the klystron's RF driver from the biasing voltage of the first stage (~50kV) and to enable efficient RF transmission of the driving RF signal (~100W) into the input cavity.

HVRFT is a specialized RF circuit that allows to isolate RF pre-amplifier from the biased voltage of the klystron's 1st stage, whilst maintaining good RF transmission.

FCC TS MBK Summary and outlook

- The reduction of energy consumption in the future large scale accelerators, like FCC, is of a great importance.
- Novel two-stage (TS) klystron technology was introduced recently. It enables compact solution in UHF band, with potential to increase the efficiency from 65% in existing commercial tubes up to 80%.
- Such a 400 MHz, 1.0 MW TS MBK klystron for FCC is now under development at CERN as a part of the High Efficiency Klystrons project.
- RF circuit, beam optics and special axillaries, like HVRFT and DC accelerating gap rejector, have been evaluated and confirmed in simulation the tube conceptual feasibility with potential to reach target efficiency of >85%.
- The next step will be integration of beam optics and RF circuit, followed by technological development and prototype fabrication in collaboration with industrial partner.
- Thermal Analysis will be done in future.

- Project leader: Igor Syratchev
- Project team @CERN: Zaib Un Nisa, Nuria Catalan Lasheras.
- Project team@ Lancaster: Anis Baig, Graem Burt.