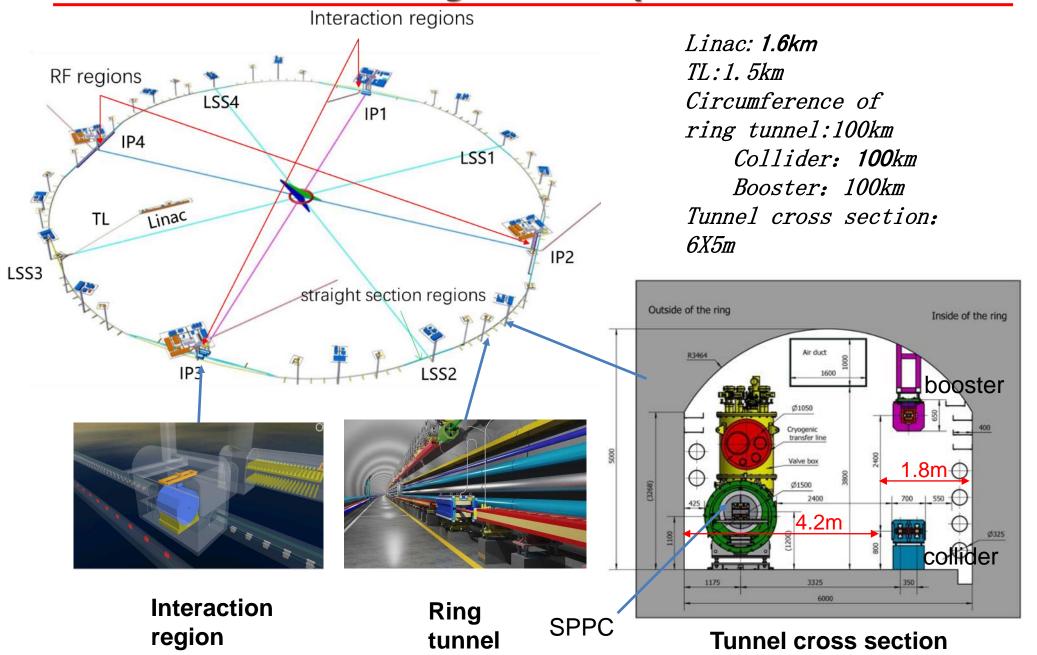


CEPC alignment and Installation

Wang xiaolong

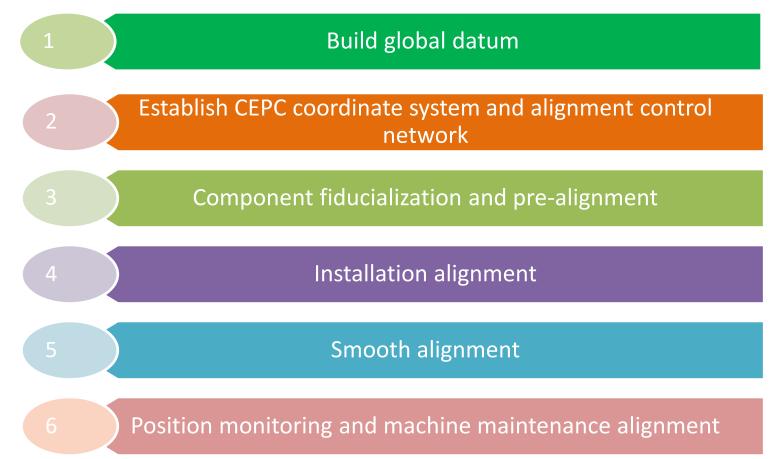

On behalf of CEPC Alignment and Installation Group

CEPC International Workshop Oct. 23-27, 2023, Nanjing

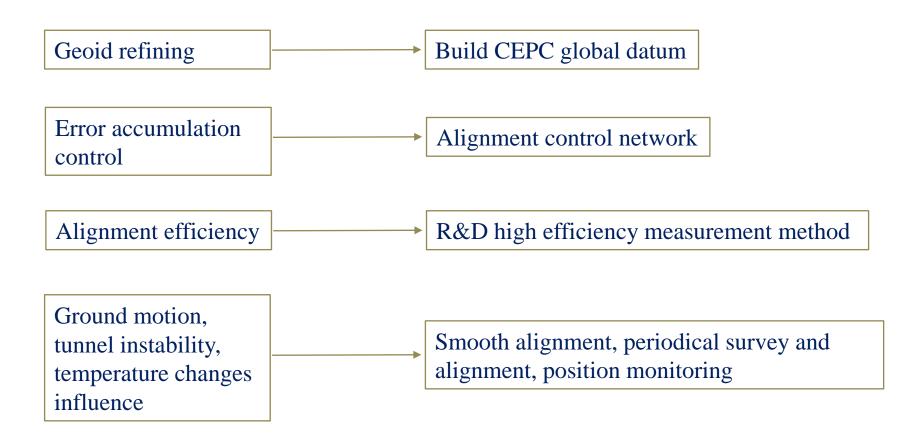
Contents

- **1.** Introduction
- 2. CEPC global datum
- **3.** CEPC coordinate system
- 4. Alignment control network
- **5.** Fiducialization & pre-alignment
- **6.** Tunnel installation alignment
- **7.** Deformation and solutions

Alignment scope

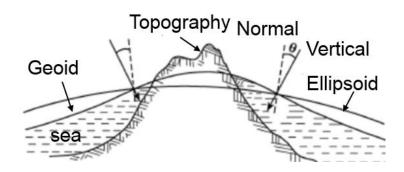

• Quantity of components

Component	Collider Ring	Booster	Linac, DR, TL	Total
Dipole	16258	14866	135	31259
Quadrupole	4148	3458	714	8320
Sextupole	3176	100	72	3348
Corrector	7088	2436	275	9799
BPM 、 PR 、 DCCT 、 kicker	3544	2408	180	6132
Septum Magnet	68	32	2	102
Kicker	8	8	2	18
Cryomodule	32	12		44
Electrostatic separator	32			32
Collimator dump	36		8	44
Superconducting Magnets	4			4
Solenoid			37	37
Accelerating structure			577	577
Cavity			4	4
Electron Source			1	1
Positron Source			1	1
Detector	2			2
Total	34396	23320	2008	59724

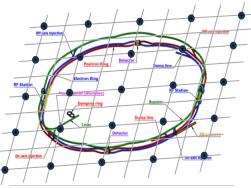

• Alignment accuracy requirement

Relative position accuracy requirement of adjacent components (1σ)						
Component	Transver sal/mm	Vertical /mm	Longitudin al/mm	Roll /mrad	Pitch /mrad	Yaw /mrad
Dipole	0.1	0.1	0.15	0.1	0.2	0.2
Quadrupole	0.1	0.1	0.15	0.2	0.2	0.2
Sextupole	0.1	0.1	0.15	0.2	0.2	0.2
Corrector	0.2	0.2	0.3	0.2	0.2	0.2
ВРМ	0.2	0.2	0.3	0.2	0.2	0.2
Cryomodule	0.5	0.5	1	0.3	0.3	0.3
Septum Magnet	0.2	0.2	0.3	0.2	0.2	0.2
Kicker	0.2	0.2	0.3	0.2	0.2	0.2
Electrostatic separator	0.2	0.2	0.3	0.2	0.2	0.2
IR Quadrupole	0.05	0.05	0.1	0.1	0.1	0.1
IR Solenoid	0.2	0.2	0.3	0.5	0.5	0.5

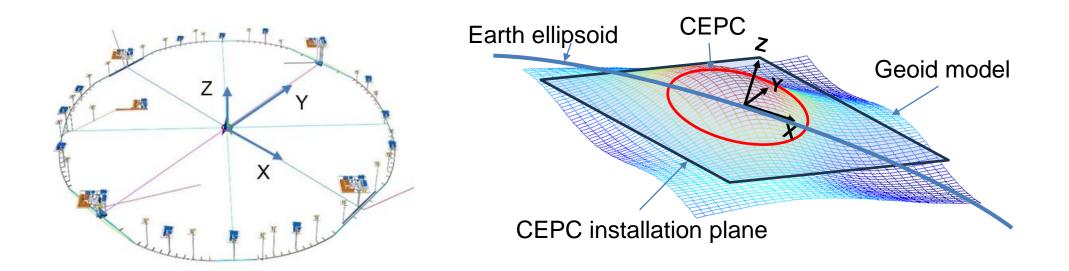
- The goal of CEPC alignment : Adjusting all of the components to the designed positions within the specified tolerance and providing a smooth beam orbit under the absolute position control.
- Steps of alignment



• Key issues of CEPC alignment


2、CEPC global datum

CEPC scale is very large, performing the alignment it must take into account the Earth's gravity field influence.

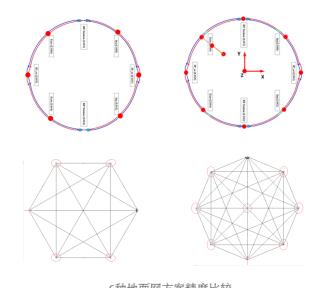

- ① Quasi-Geoid model: global datum for the height coordinate calculation.
- 2 Vertical deflection model: global datum for the instrument coordinate system vertical axis orientation in the CEPC coordinate system.
- Build method:
 - > Establish a measurement network covering the CEPC area.
 - > Carry out GNSS, level, gravity and vertical deflection measurement
 - Using latest technologies to build the models.
- goal: Quasi-Geoid model accuracy is better than10mm; vertical deflection model accuracy is better than 1.0".

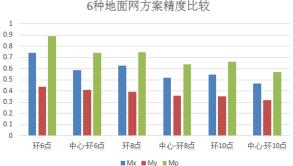
Measurement network

3、CEPC coordinate system

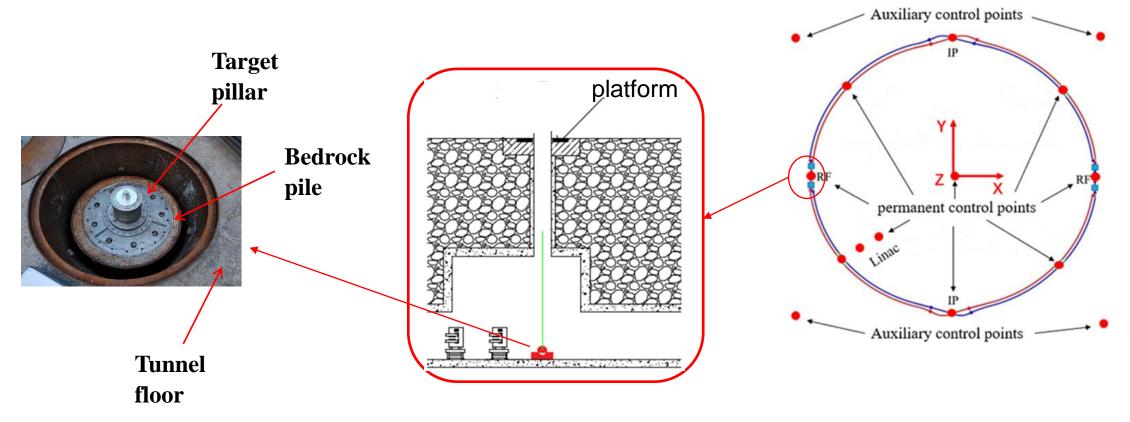
- CEPC coordinate system definition
 - > Origin is in the ring center, XY plane is the machine installation plane.
 - In CGCS2000 coordinate system, we can design the coordinates of the origin, the points on x-axis and y-axis, make the XY plane best fit with the local geoid model.

- Control network: provide an unified location reference frame for CEPC alignment and control the error accumulation;
- 3 levels control network
 - Surface control network -
 - Backbone control network
 - Tunnel control network

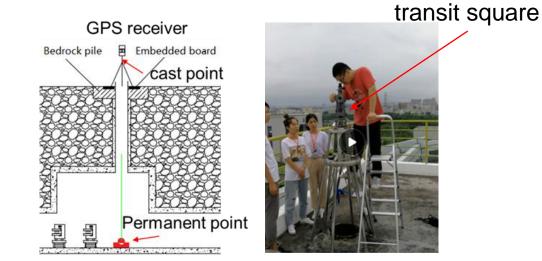




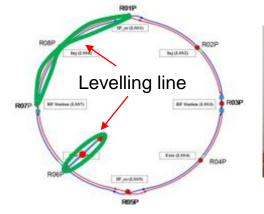
Surface control network


- CEPC global position control, high precision constraint points for tunnel control network.
- 6 layout schemes have been compared
 - Ring 6 points
 - Ring 6 points + 1 center point
 - Ring 8 points
 - Ring 8 points + 1 center point
 - Ring 10 points
 - Ring 10 points + 1 center point

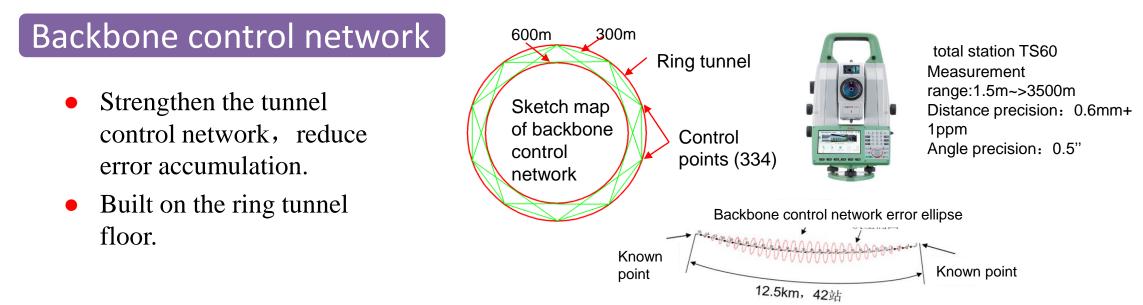
• Accuracy will be improved with the increasing of control points but the effect will wear off



- Considering the cost and the accuracy requirements, the ring 8 points + 1 center point scheme is plan to be adopted.
- Structure of the surface control network

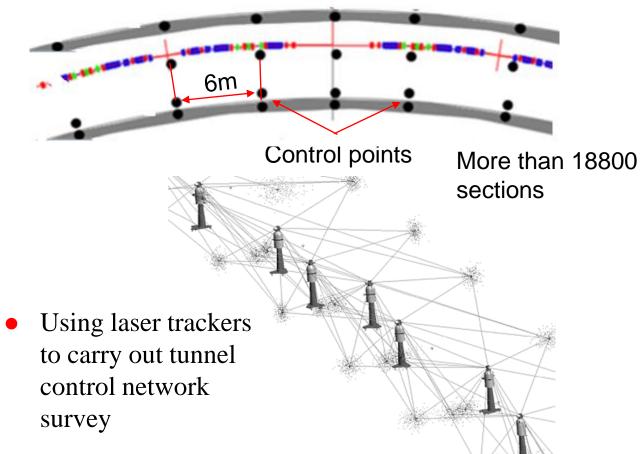


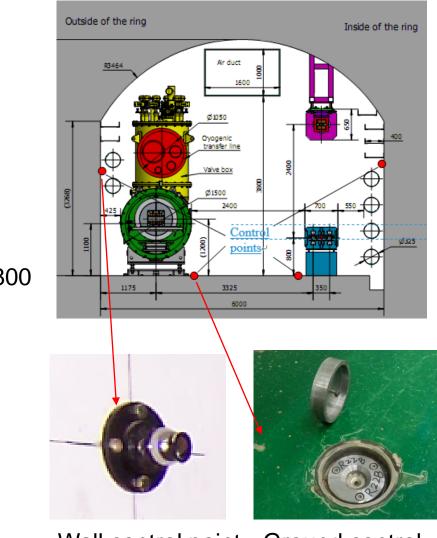
- Surface control network measurement:
 Planar measurement
 GNSS
 Elevation measurement
 Level
- Surface control network measurement accuracy: 7mm;



Personnel and time requirements

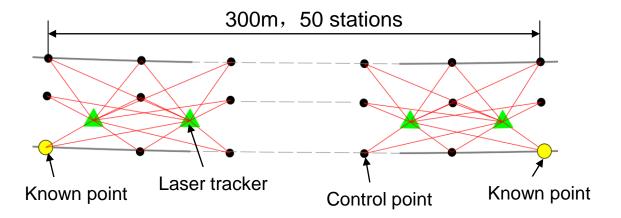
	Planar measurement	Elevation measurement
Group	16	4
Week	3	4



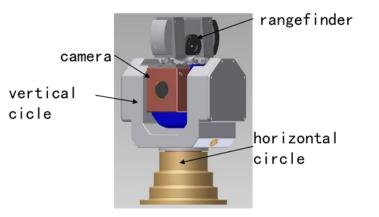

Planar measurement						
Instrument	Total station, gyro-theodolite					
Group	8					
Working day	11 (4points/group/day)					
Accuracy	Standard point position error is 3.85mm. Relative point position error is 0.79mm (300m)					

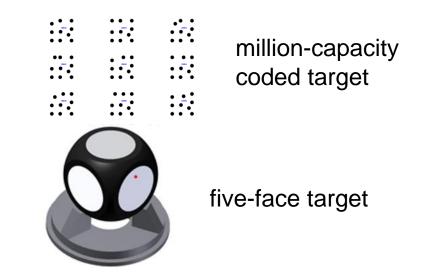
Elevation measurement					
Instrument	Level				
Group	8				
Working day	4 (4km/group/day)				
Accuracy	Maximum point position error is 7mm, Relative point position error is 0.5mm (300m)				

Tunnel control network

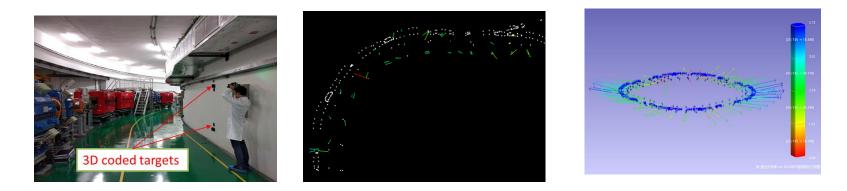

• Providing position reference for component installation and alignment

Wall control point Ground control point


- Simulation
- According to angular accuracy 2", distance accuracy 0.015mm+2ppm to generate the simulated observations.
- The standard point position error is 0.38mm and the relative point position error within 6m is better than 0.074mm.



Time estimation for laser tracker measurement					
Instrument Work load Speed (1group/1day) Group Month					
Laser tracker	18884 stations	8 stations	16	6	

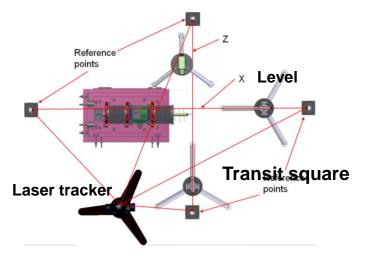

- Visual instrument
- A new kind measurement instrument: photogrammetry, distance, angle measurement functions,
- Advantage : can observe multiple points in a single measurement
- Objective: high accuracy, high efficiency measurement
- Two generations prototypes have been developed.

> Carried out 2 times photogrammetric experiments in CSNS RCS ring.

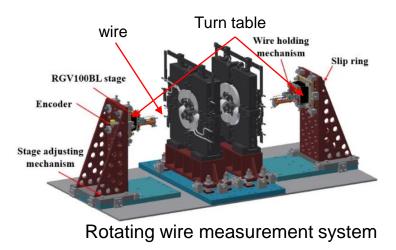
- Efficiency can be increased by 3 times.
- > Accuracy need to be improved.
- Currently, visual instrument calibration is under studying. After that, measurement experiment will be performed to verify its accuracy.

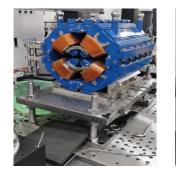
Time estimation for Visual instrument measurement					
Instrument Work load Speed (1group/1day) Group Month					
Visual instrument	18884 stations	24 stations	12	2.6	

5、Fiducialization & pre-alignment


- Purpose of fiducialization: to relate the nominal beam center of a component to its fiducials, then, according to the designed beam position, we can calculate the nominal coordinates of the fiducials in CEPC coordinate system.
- Beam center
- Geometric measurement, by using laser tracker, measuring arm, optical instrument.

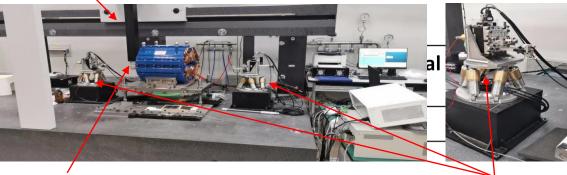
Transversal	Vertical	Longitudinal
/mm	/mm	/mm
0.05	0.05	0.08-0.15


laser tracker


5, Fiducialization & pre-alignment

- Quadrupoles and sextupoles fiducialization will based on their magnetic center.
- A rotating wire magnet fiducialization system has been developed and successfully used for HEPS quadrupole and sextupole fiducialization.

• Technical features


- The rotating wire measurement system enables high precision magnetic center measurement.
- 6-DOF stages allows for efficient and automatic adjustment of the wire.
- Using an image probe for the wire position accurate measurement.
- The CMM can realize magnet surface high precision automatic measurement.

Support and adjustment mechanism

Image probe

CMM

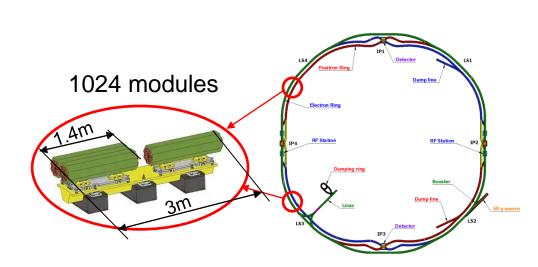
Transversal	Vertical	Longitudinal
/mm	/mm	/mm
0.014	0.014	0.05

6 DOF stage

5, Fiducialization & pre-alignment

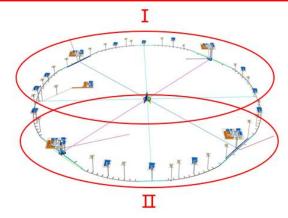
Group number and time estimation of component fiducialization					
Component	Instrument	Number	Speed (1group/day)	Group	Month
Dipole	Laser tracker & Optical instrument	31259	2	16	39.1
Quadrupole	Rotating wire	8320	3	8	14
Sextupole	Rotating wire	3348	3	8	5.58
Corrector	Measuring arm	9799	4	16	6.12
BPM, PR, DCCT, kicker	Measuring arm	6132	4	16	3.83
Septum Magnet	Laser tracker	102	1	16	0.26
Kicker	Laser tracker	18	1	16	0.05
Electrostatic separator	Laser tracker	32	2	16	0.04
Collimator /dump	Laser tracker /Optical instrument	44	2	16	0.06
Solenoid	Measuring arm	37	4	16	0.02
Accelerating structure	Laser tracker	577	2	16	0.72
Cavity	Measuring arm	4	2	16	0.01
Total				16	70 / (5.9 years)

5. Fiducialization & pre-alignment


- Sextupoles installation of collider ring will apply the pre-alignment method.
- Advantages: Can get higher relative position accuracy of the components on one girder and can save tunnel installation time.

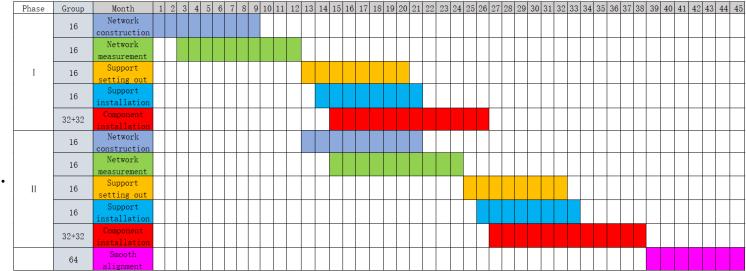
Pre-alignment error budget

Error item	Error/mm	Measurement instrument
Magnet fiducialization	0.014	Rotating wire
Measurement	0.02	Laser tracker
Adjust & lock	0.03	
Magnet open and close	0.01	
transport	0.02	
Total	0.045	


Time estimation of pre-alignment

Module number	Speed (1group/day)	Group	Month
1024	0.5	16	5.2

6、Tunnel installation alignment


- Installation scheme is made based on the civil construction schedule, includes two phases.
- project period is :3 years and 9 months

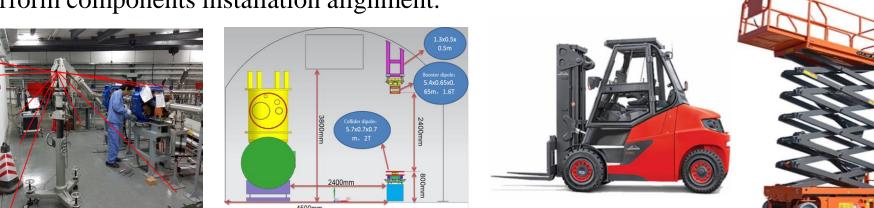
• Tasks:

- 1. Control network construction.
- 2. Control network measurement
- 3. Support setting out and installation
- 4. Component installation and alignment.
- 5. Smooth alignment

Ring tunnel installation plan

6. Tunnel installation alignment

Collider ring alignment manpower and time estimation			Booster a	alignment	: manp	ower	and time			
Component	Number	Piece (1	Group	Month (25	estimation				
		group / day)		workdays month)	/	Component	Number	Piece (1 group /	Group	Month (25 workdays /
Dipole	3170 (16258 cores)	3	16	13.5				day)		month)
Quadrupole	4148	4	16	2.6		Dipole	14844	2	16	18.5
Sextupole	3176	4	16	2.0		Quadrupole	3458	4	16	2
Corrector	7088	6	16	3.0		Sextupole	100	4	16	0.1
BPM\PR\DCCT	3544	6	16	1.5		Corrector	2436	6	16	1
Septum Magnet	68	3				BPM\PR\DC		_		
Kicker	8	4				СТ	2408	6	16	1
Cryomodule	32					Cryomodule	12		16	
Electrostatic	32	2	16	1.5		-	12		10	
separator	52	Z	10	1.5		Septum	32	2		1.4
Superconducting	4					Magnet				
Magnets						Kicker	8	4		
Collimator\ dump	36	4	\frown	\frown		Total			16	24
Total			16	24						24

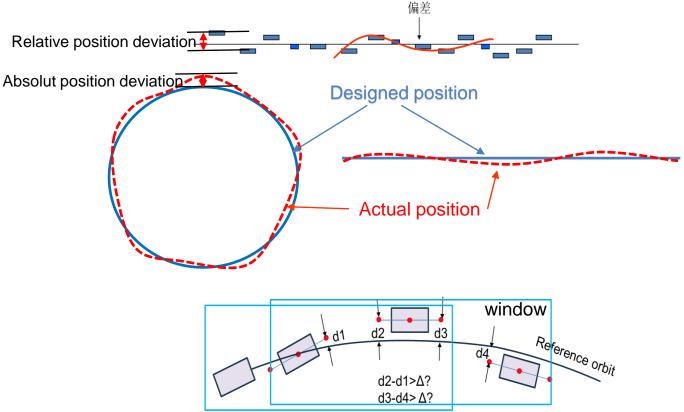

6. Tunnel installation alignment

Linac DR TL installation and alignment time estimation							
Component	Number	Piece (1 group / day)	Group	Month (25 workdays / month)			
Dipole	135	3	1	1.8			
Quadrupole	714	4	1	7			
Sextupole	72	4	1	1			
Corrector	275	6	1	1.8			
BPM\PR\DCCT	180	6	1	1.2			
Accelerating structure	577	4	1	5.8			
Solenoid	37	3	1	0.5			
SHB BUN RF Cavity	4	2	1				
Collimator dump	8	3	1				
Electron Source	1			0.4			
Positron Source	1		1				
Septum Magnet	2		T				
Kicker	2						
Total			1	19.5			

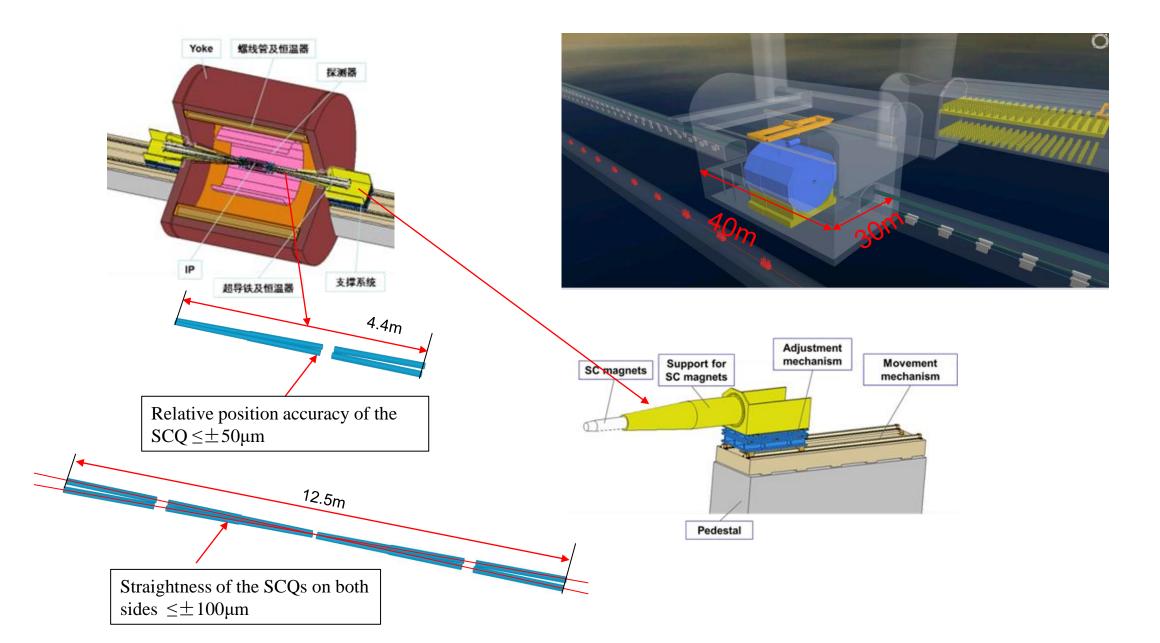
Linac DR TL installation and alignment time estimation

6, Tunnel installation alignment

- Using the tunnel control network as reference and laser trackers as measurement instruments to perform components installation alignment.
- Various vehicles and hoisting machineries will be needed.


- Smooth alignment
 - Although during the initial installation all of the components are adjusted within the required tolerance, due to ground motion, temperature change and other factors, the control network and machine occur deformation will be inevitable. So, after the initial installation and alignment, it needs to carry out an overall survey to check the deformations, and repeat the alignment work to reduce deformation.
 - Considering the enormous workload of align all of the components to their designed position, we will adopt a smooth alignment strategy instead.

6. Tunnel installation alignment


- Smooth alignment will focus on the relative position alignment between adjacent components and relax the absolute position accuracy requirement. The goal is to provide a smooth orbit for beam operation.
- Calculation method: Using a window covers three adjacent components.
 Examining the offsets between the middle and both sides components, if any offset beyond 0.08mm, then calculate new position of the middle component. This is an iterative process, each time the window moves forward one component and repeat the calculation. It will lasted until there is no component overshoot.
- According to the smooth calculation result adjust the components, and this smooth alignment will be repeated 2-3 times.

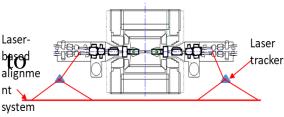
Quadrupole / Sextupole alignment accuracy estimation (1σ)

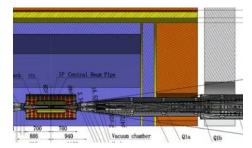
Fiducializaton/mm	measurement/mm	adjustment /mm	Total/mm
0.014	0.05	0.08	0.1

MDI alignment

Install SCQs and solenoids into the cryostat and performing a pre-alignment

Establish a laser alignment system beside the detector and adjusting the laser beam parallel to the designed detector center line.

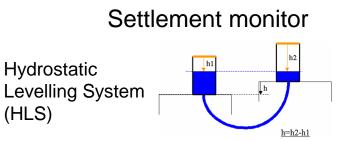

MDI alignment is still under studying, here can only propose a preliminary strategy.


- Using this laser alignment system as a reference, adjust the rails and cryostats by or alignme the designed position in vertical and transversal.
- > Push the cryostats into the detector along the rail.

MDI alignment

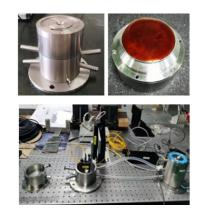
Alignment strategy

- > The alignment error of the SCQs can be examined by using a vibrating wire.
- As the end of the cryostat is inserted into the detector, its position cannot be measured by a laser tracker, so it need to research cryostat position measurement method.
- The cryostat is designed as a cantilever structure, it is necessary to research the deformation monitoring method.



7. Deformation and solutions

- For CEPC such large-sized machine, it occurs deformation will be inevitable.
 - To find where occur the deformation, during the annual shutdown period, an overall measurement will be conducted.
 - > Installation monitor system is an effective way to find deformations immediately.


WPS

Component transversal and vertical monitor

Capacitive hydrostatic level sensor developed for HEPS

• Due to cost constraints, the monitoring sensors will not be installed evenly throughout the entire ring. We plan to install them in the interaction regions which have higher alignment accuracy requirement.

Summary

- Considering the Earth gravity field influence to the measurement, two kinds of global datums need to be built.
- To control the error accumulation of large range measurement, a three levels control network has been designed
- In order to increase measurement efficiency, a new kind measurement instrument - visual instrument is under R&D.
- MDI alignment techniques need to be further studied.
- To cope with the deformation, a smooth alignment strategy will be applied, annual survey will be conducted and monitoring systems will be installed.

Thank You !