

Electromagnetic deflection (and other systematics) in luminosity measurement at the Z-pole at CEPC

I. Božović-Jelisavčić I. Smiljanić, G. Kačarević

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Supported through Grant No. 7699827 Project IDEAS HIGHTONE-P

October 2023 CEPC Workshop, University of Nanjing, China

- Introduction
- Does position matters (s-axis vs. z-axis)?
 - EMD of the initial state at the Z-pole (cont. of ongoing study)
 - Other systematics (from mechanics and MDI)

• Summary

- Challenging control of luminosity systematics at 10⁻⁴ at 91.2 GeV
- Most sources from mechanics and MDI have been studied and documented in CEPC CDR and *JINST 17 P09014, 2022,* including experimental determination of the beam energy spread and its impact on integrated luminosity and precision EW observables
- We started to look into **beam-beam effects**, presenting p_x-kick induced by EMD of the initial state at the WS in Edinburgh [https://indico.ph.ed.ac.uk/event/259/contributions/2470/attachments/1372/2066/CEPC_WS2023_EMD1_Bozovic.pdf].
- However, everything has been done for the luminometer at the s-axis.

Introduction

The geometry of the CEPC interaction region

CEPC Interaction Region

Detector

arccos0.99;

300

200

EMD1 – p_x -kick of the initial state (s-axis)

- GuineaPig C++ V.1.2.2
- E_{beam}= 45.5 GeV
- Post-CDR CEPC beam: y 🛽 🔁 z
 - $N_e = 1.5 \cdot 10^{11}$
 - σ_x= 6 μm
 - $\sigma_v = 35 \text{ nm}$
 - σ_{z} = 11.8 mm

- e+e⁻ system receives kick of ~5.8 MeV in -x direction, or ~2.9 MeV per particle in average
- No shift along y-axis
- x-angle effectively reduced for 140 μ rad ($\delta \alpha$), 70 μ rad per beam
- At distance of 0.95 m from IP p_x -kick is equivalent to a luminometer shift of ~60 μ m along the x-axis
- Knowing that δE depends on both x-angle and $\delta \alpha$, δE is found to be ~52 keV

EMD1 – p_x-kick of the initial state (s-axis)

- Change of four-vectors of initial state modifies final state's angles
- Bhabha count in the FV changes for ~ $4 \cdot 10^{-3}$ in the presence of EMD1 with nominal beams
- Variation of beam parameters (bunch charges and σ_x) in the ±10% range w.r.t. the nominal beam size produce deviation of $\Delta L/L \le 2.10^{-4}$

EMD1 – p_x-kick of the initial state (s-axis)

- BHLUMI V4.04
- Luminometer at 16.5 mrad
- 3.2 ab⁻¹
- SYMMETRIC
- FV: 53-79 mrad
- ASSYMMETRIC
- Narrow FV: 55-77mrad
- Wide: 53-79 mrad

The way of counting matters at s-axis

As shown for other colliders (i.e. ILC and FCCee), the EMD1 effect on Δ*L*/*L* is reduced with asymmetric counting at s-axis;
s-axis: Δ*L*/*L* ≈ 6·10⁻⁵ with asymmetric counting, with symmetric app. 2 orders of magnitude worse;
z-axis: ≤10⁻⁴

Relative distance between left and right arms of the luminometer ΔI

~100 μ m at all axis

Radial shower position resolution σ_r

~100s of μm at all axis

Radial position fluctuations of the luminometer σ_x w.r.t. the IP

~few 100s μ m at all axis

Axial position fluctuations of the luminometer σ_{z} w.r.t. the IP

~few 100s μ m up to a few mm

Radial IP displacements Δx_{IP}

Axial IP displacements Δz_{IP}

~few 100s μ m at all axis

few mm at all axis ⇔ few ps in beam synchronization

- We've started to look into EMD effects at CEPC in the context of integrated luminosity precision at the Z-pole; Sensitivity on the way of counting draws us to investigate EMD1 and other systematic effects w.r.t. the luminometer positioning (s-axis vs. z-axis) as well;
- With the post-CDR beams p_x-kick of 5.8 MeV is found at the Z-pole. It translates into x-angle decrease of 70 μrad and beam energy increase of 52 keV. It gets less than 10⁻⁴ with asymmetric counting on s-axis and with arbitrary counting on z-axis;
- Systematic effects from mechanics and MDI (metrology) are rather sensitive to the way of counting than to the luminometer position; However, asymmetric counting is not effective at the z-axis;
- No effect seems to be critical at z-axis (more than at s-axis);
- But, (mostly linear) dependences of counting loss present in symmetrical geometry (s-axis) get lost at the z-axis. In addition, asymmetric counting can be relaxed by tuning the size of the shrunken FV.

Backup

Correction for EMD1

- $\delta \alpha$ (like beam energy spread) can be precisely measured using the same central process (di-muon production)
- This implies that p_x -kick can be taken as correction to luminosity determination with the same uncertainty (standard error gives 0.26 mrad/ $\sqrt{N\mu\mu}$, 10⁶ events takes 12min.)

