https://indico.ihep.ac.cn/event/19316/ 1

LumiCal integration : GEANT signals on BHLUMI Bhabha e⁺e⁻(y)

Suen Hou 侯書雲 Academia Sinica suen@sinica.edu.tw

2023.10.276 14:00

- $\circ~$ Bhabha parameters for 10⁻⁴ systematics on $\int\! \mathcal{L}$
- GEANT simulation
 reading BHLUMI generated Bhabha e⁺e⁻(γ)
- **IP smearing** $(\sigma_x, \sigma_z) = (6, 380) mm$ propagated to θ_{min} for Bhabha detection
- \bigcirc **Beam-pipe thickness** 1mm Be Iow-mass window to θ_{min} for Bhabha
- **LYSO preshower (2X0)** detecting radiative Bhabha, e^{\pm}/γ separation

LumiCal geometry

- L=2x10³⁶/cm²s¹ @Z-pole, goal is 10⁻⁴ systematics
- ø 20 mm racetrack, beam-crossing: 33 mRad
- IP bunch : $\sigma_x \sigma_y \sigma_z = 6 \mu m$, 35 nm, 9 mm
- Bunch crossing: 23 ns

LumiCal before Flange

z = 560~700 mm

• Low-mass window: Be 1mm thick traversing @22 mRad traversing L= 45 mm,

= $0.13 X_0$ (Be), $0.50 X_0$ (Al)

- **Two Si-wafers** for e^{\pm} impact θ
- O 2X₀ LYSO = 23 mm

LumiCal behind Bellow:

z= 900~1100 mm

- \circ Flange+Bellow : ~60 mm, 6 X₀
- o 17 X₀ LYSO 200 mm

Beampipe, IP to flange z= ± 700 mm

IP bunch smearing

- bunch size $\sigma_x = 6 \mu m$, $\sigma_z = 9 mm$ → *IP spot* $\sigma_x = 6 \mu m$, $\sigma_z = 380 \mu m$ boost by 33 mRad beam crossing
- $Z \rightarrow e^+$, e^- at ϑ =30 mRad smearing at @z=560mm smeared width $\sigma(\vartheta)$ = 24 µRad back-to-back $\sigma(\Omega)$ = 21 µRad

GEANT beampipe multiple scattering

GEANT LumiCal electron shower

BHLUMI QED generator $e^+e^- \rightarrow e^+e^-(\gamma)$

Scattered electron θ CMS generated (θ>10mR) x33mR boosted

Radiative Bhabha $E(e\pm)$ vs $E(\gamma)$

Electron hits on 1st Si-wafer, LYSO @z=647mm

IP $(\sigma_x, \sigma_z) = (6,380 \ \mu m) \leftarrow compatible w. (0,0)$ Electrons hits

Si wafer @z=560mm

 \circ |x|<6.0 mm $\sigma(\vartheta)$ = 54 uR (1mm Be) \circ |x|>6.0 mm $\sigma(\vartheta)$ = 95 uR (1m Al pipe) \circ back-back Op.Ang $\sigma(\Omega)$ = 137 uR

LYSO (2X₀) @z=647mm

|x|<7.3 mm σ(ϑ) = 54 uR
|x|>7.3 mm σ(ϑ) = 100 uR
back-back Op.Ang σ(Ω) = 144 uR

X_{hit} mm

hit – gen. |x|<6

2X_o LYSO bars observables

- incident particles are e^{\pm} ,(y) and secondaries
- **GEANT** sum dE/dx in each LYSO bars 0 $3x3mm^2$, 23 mm long, $2X_0$
- **Deviation to e^{\pm} truth** (impact hit >Eb/2) 0 mostly < 0.2mm
- Hit distributions in a Bar distributed due to Bhabha θ , w./w.o. photon

dy mm

40

20

10⁻⁴ systematics, multiple scattering

- **1. BHLUMI** smear θ' , ϕ' of scattered e^+ , e^- **Multi. Scatt. 100** μ **Rad** $\theta' = \theta x$ Gauss(100 μ R), $\phi' = \phi x$ Gauss(100 μ R)
- **2.** $\delta N/N$ systematics:

 δ N = count event deviation due to M.S. M.S is Gaussian, Symmetric at θ_{min}= 25 mRad, slope of Bbhabha in neiboring 100 μRad bins to 25mR $\delta N(@25mR)/N(25-80 mR) < 10^{-4}$

CEPC WS2023, J. He

summary

the GOAL is for luminosity to 10^{-4} , Bhabha counting in a fiducial > θ_{min}

 \circ IP smearing, Multiple Scattering \rightarrow ~50 μ m

○ Preshower LYSO < 2X₀

- hit cluster size < 200 μ m
- e/γ hit-cluster sum(dE/dx) ~20 MeV

\odot Planning for testbeam e/y 1 to 100 GeV

- hit cluster size < 200 μ m
- Preshower in BGO/LYSO for shower size, sum(dE/dx)

Bhabha event pile-up rate @High-Lumi Z¹⁹

 High-Lumi Z (2021 design) L_{max}/IP = 115 x 10³⁴/cm²s
 Bhabha both e⁺, e⁻ detected, X-sec = 100 nb Event rate = (246x10⁻³³) x (115 x 10³⁴) /sec = 115 kHz
 Event rate / 25 ns bunch crossing = 0.003 events /b.c.
 Pile-up: next b.c., @adjacent cell in peak region Pile-up Fraction = 0.018*6cells/2sides = 0.054

Pile-up event rate = 0.003*0.054 = **1.6 x 10**⁻⁴

c.f. LEP L= 1x10³² X-sec= 100nb Rate= **10 Hz**

50 GeV e- shower in 3x3 mm² cells

event fraction /(cell of 3x3mm²) maximum at beampipe edge = 0.018

- 探测器名和基本功能(比如TPC,测带电粒子径迹): LumiCal,测量加速器束流e⁺e⁻碰撞亮度Luminosity 架设在束流管 ±z = 700 mm,法蓝内外,探测低角度电子, 在e⁺e⁻碰撞时区内,筛选 Bhabha 弹性碰撞正负电子对事例, Monte Carlo QED 计算探测器事例量,反推出 Integrated Luminosity。 准度要求 10⁻⁴。
- 2. 需要探测的物理量(比如时间,能量,原初电离dE/dx,原初电离束团数dN/dx,闪 烁光,等等):
 - **探测粒子:** Ebeam 正负电子, 及跟随的 Final State Radiation 低能光子 (>~ 1GeV) 在 bunch crossing 25 nsec, 分辨束流正负电子弹性反射 **硅探测器:** 电子 theta, phi 角度, 极端驱近 1 uRad 精准位置, LYSO 晶调:标定 > Ebeam/2 电子, 及区隔邻近的 FSR 光子
- 3. 探测器对电子学输出的通道数,
 - **电子碰撞点硅条探测器:**每侧两层共4层,每层4k ch. 总共16k 通道数 LYSO 晶条 SiPM 读出:每侧 分前(2X0)后(17X0)共4套 LYSO 每套 170cm²,需1.7k ch. 总共 7k通道数
- 4. 单通道预计计数率,

Z lumi Lmax = 115 x 1034/cm²s, LumiCal Bhabha 探测器覆盖截面 100 nb Event rate = $(246x10^{-33}) \times (115 \times 10^{34})$ /sec = *115 kHz* Event rate / 25 ns bunch crossing = 0.003 events /b.c. lowest theta (束流管上/下) hot LYSO 3x3 mm² 6-cell cluster event fraction = 0.12, 最热区每LYSO cell事例量 → 0.00016 events/b.c.

- 5. 信号特征:电荷?电流?电压?上升、下降时间,宽度?
- **硅条:** PN 二级 25k 电子电荷, ADC 需要极快, 宽 50 ns 内, 在 25 ns B.C. 前后事例分辨开 LYSO SiPM: ADC 需要极快, 宽 50 ns 内, 在 25 ns B.C. 前后事例分辨开, 12bit 100 GeV 线性能量测量
- 6. 信号传输方式(比如同轴电缆·PCB·接插件)·阻抗特性。 前端PCB 缆线空间紧迫·可能放 ADC· serializer 接 10 Gbps 光纤读出 不做 trigger, 接 FPGA 做事例筛选
- 7.最小、最大信号(也就是动态范围)。
 硅条 测 MIP 单点电离电荷
 LYSO SiPM 比照 ECAL 量测 300 MeV 到 100 GeV 电子

对数字化的要求(LSB, 精度,线性度)。 LYSO SiPM 比照ECAL, 需要监测 Pileup, 因此,每25 ns B.C. 做一次 Signal Level comparator 确认临接事例讯号是否被叠高

9. 探测器的工作温度和范围,如果电子学需要散热,可否和探测器温控在一起?有无 对电子学的功耗限制和多少。 LumiCal 硅条及 SiPM 工作温度跟顶点探测器一致,约20℃ LumiCal 每层硅条 4k 通道需 40颗读出chip 估计发热 10W 内, LYSO 每套 1.7k 通道也在 10W 内。每Z侧 40W,地线接到束流管冷确面。