

CEPC Iron Yoke Mechanical Design Optimization

Institute of High Energy Physics Xia Shang Ji Quan 2023/10/27

- Overview
- CEPC iron yoke mechanical design optimization
- Summary
- What's next

CEPC Mechanical component of detectors Height: 8.5m Length: 11.1m Weight: about 3000 tons (Iron yoke: about 1000 tons)

Composition: End-cap iron yoke + Barrel iron yoke

Functions:1) Provide support, adjustment and locking for the internal detector;

- 2) Provide the magnetic field loop to ensure the required uniformity of the magnetic field;
- 3) Absorb all particles except μ ;
- 4) Provide placing space for μ detector;

Design Requirements: 1) Ensure sufficient strength and stiffness; 2) Require total thickness of yoke; 3) Thickness of each layer; 4) Material requirements; 5) Meet the requirements of sub-detector assembly and overhaul maintenance; 4

CEPC iron yoke mechanical design optimization

Physical requirement

 The detection performance of µ detector Optimization of the number of iron yoke layers

- The number of layers of space where the μ detector can be placed

Barrel iron yoke plate thickness optimization

• Influence of thickness of barrel iron yoke plate on iron yoke deformation

Barrel iron yoke support surface optimization Influence of the number of support surfaces on iron yoke deformation

Optimization of the number of iron yoke layers

• Two designs

symmetrical structure (7 layers)

spiral structure(7 layers)

7

Barrel iron yoke

• symmetrical structure (7 layers)

Dodecagon 8 iron yoke plates place 7 layers μ detectors 12 modules Length: 8960mm Height: 8520mm Thickness: 600mm(outer35mmX2+clearance50mmX7+middle30mmX6) Material: T10 Weight: about 490 tons 2150 S \mathbf{c} 1910 S

Barrel iron yoke

• symmetrical structure (7 layers)

Feature:

The space for placing the μ detector increases from the inside to outside, and the size gap is not large;
Install the μ detector at both ends of the module.
Difficult subsequent maintenance;

Circumferential: 12 module Axial: 1 or 2 units

 μ Minimum detector space : 1910(circumferential) × 4480(axial) μ Maximum detector space : 2150(circumferential) × 8960(axial)

Barrel iron yoke

• spiral structure (7 layers)

Barrel iron yoke spiral structure (7 layers)

Circumferential: 12 modules Axial: 7 units

 μ Minimum detector space : 1020(circumferential) × 1230(axial) μ Maximum detector space : 2750(circumferential) × 1230(axial)

Feature:

- 1. The space for placing the μ detector is gradually reduced from inside to outside, and the size gap is large;
- 2. Each μ detector space can be opened individually;
- 3. Convenient installation and subsequent maintenance;

Features:

4. The detection angle can be fully covered to avoid μ detection blind zone; 12

Conditions: Design model: place a 7 layers μ -detector with a thickness of 600 ; Yoke iron material: T10 ; Load: self-weight of barrel yoke iron ; Constraint condition: bottom surface ;

Deformation

Max 40.979mm

Max 151.74MPa

Max 1.667mm

Max 77.591MPa

Big difference in self-weight deformation?

Max 1.667mm

Barrel iron yoke plate thickness optimization

conclusion

The thinner iron yoke plates' thickness of barrel iron yoke, the larger self-weight deformation of barrel iron yoke.

Modifying iron yoke plates' thickness of barrel iron yoke can reduce self-weight deformation of barrel iron yoke.

Three iron yoke structures

Fixed constraint: bottom plane Module thickness: 600mm Axial length: 8960mm Load: self-weight

C: 七层对称式桶轭 ^{兑态形}

类型: 总变形

023/9/228:4

40.979 最大

642E

31.873

27.32

22.766

18.213

13.66

9.1065

4.5533

0 最小

单位: mm 时间: 1 s

Comparison of symmetrical structure

3 layers of μ detector placement space The thickness (upper and lower plates): 150 mm and 100mm; The thickness (the middle layer) :120 mm\110mm; Clearance: 40mm Weight: 920 tons **5 layers of μ detector placement space** The thickness (upper and lower plates) : 95 mm. The thickness (the middle layer): 40mm; Clearance: 50mm Weight: 760 tons

Max deformation: 40.979mm

7 layers of μ detector placement space The thickness (upper and lower plates): 35mm; The thickness (the middle layer): 30mm; Clearance: 50mm Weight: 490 tons 17

Fixed constraint: bottom plane Module thickness: 600mm Axial length: 8960mm Load: self-weight

学型:总亦用

时间:1 s

4818 1.2966

1 1 1 1 4

0.92613

0.74091

0.55568

0.37045

0.18523

口是小

Comparison of spiral structure

Max deformation: 1.2403mm

3 layers of μ detector placement space The thickness (upper and lower plates): 150 mm and 100mm; The thickness (the middle layer) :120 mm\110mm; Clearance: 40mm Weight: 920 tons

Max deformation: 1.3316mm

5 layers of μ detector placement space The thickness (upper and lower plates) : 95 mm. The thickness (the middle layer): 40mm; Clearance: 50mm Weight: 760 tons

Max deformation: 1.667mm

7 layers of μ detector placement space The thickness (upper and lower plates): 35mm; The thickness (the middle layer): 30mm; Clearance: 50mm 18 Weight: 520 tons

Result of self-weight deformation and stress of symmetrical barrel iron yoke

Number of layers	3	5	7
deformation	3.2192	7.8251	40.979
stress	48.11	80.39	151.74

Result of self-weight deformation and stress of spiral barrel iron yoke

Number of layers	3	5	7
deformation	1.2403	1.3316	1.667
stress	57.111	57.734	77.591

Unit: mm Mpa

The thinner iron yoke plates' thickness of barrel iron yoke, the larger self-weight deformation of barrel iron yoke.

Cause: iron yoke plates' thickness is too thin Solution: Modify the plates' thickness

symmetrical structure

Module fixed thickness: 600mm

Upper and lower plate: 35mm, layers: 30mm (35+35+30)

Modification plan

1. Upper and lower plate: 65mm, layers: 20mm (65+65+20)

spiral structure

Module thickness: 600mm

Upper and lower plate: 35mm, layers: 30mm (35+35+30)

Modification plan

Result of self-weight deformation of symmetrical barrel iron yoke

Number of layers	3	5	7
deformation	3.2192	7.8251	40.979 (35+35+30)
			19.161 (65+65+20)
			19.322 (95+35+20)

Result of self-weight deformation of spiral barrel iron yoke

Number of layers	3	5	7
deformation	1.2403	1.3316	1.667 (35+35+30)
			1.3582 (65+65+20)
			1.3292 (35+95+20)

Modifying iron yoke plates' thickness of barrel iron yoke can reduce self-weight deformation of barrel iron yoke.

Unit: mm

Barrel iron yoke support surface optimization

conclusion

The more fixed supporting surface at the bottom of barrel iron yoke, the smaller self-weight deformation of barrel iron yoke

Can increasing the number of fixed support surfaces reduce deformation??

Comparison of symmetrical structure

Unit: mm

	5	3	1	Number of fixed supports
Increase the number	0.36443	1.2327	3.2192	3 layers
of fixed supports	0.98218	3.0668	7.8251	5 layers
	4.9265	15.977	40.979	7 layers (35+35+30)
Reduce self-weight	2.6982	7.7344	19.161	7 layers (65+65+20)
deformation	2.5406	7.5709	19.322	7 layers (95+35+20)

Comparison of spiral structure

7 layers (35+95+20)

1.3582

1.3292

0.46361

Increase the number of fixed supports

Unit: mm

Support surface optimization

Number of fixed supports	1	3	5
3 layers	3.2192	1.2327	0.36443
5 layers	7.8251	3.0668	0.98218
7 layers (35+35+30)	40.979	15.977	4.9265
7 layers (65+65+20)	19.161	7.7344	2.6982
7 layers (95+35+20)	19.322	7.5709	2.5406

	Number of fixed supports	1	3
	3 layers	1.2403	0.3887
	5 layers	1.3316	0.4283
Unit: mm	7 layers (35+35+30)	1.667	0.53378
	7 layers (65+65+20)	1.3582	0.47061
	7 layers (35+95+20)	1.3292	0.46361

The more fixed supporting surface at the bottom of barrel iron yoke, the smaller self-weight deformation of barrel iron yoke

- 1. Introduced CEPC iron yoke design;
- 2. Optimized the number of layers of μ detector in the barrel iron yoke structure;
- 3. Optimized the thickness of the barrel iron yoke plate and the number of fixed support surfaces;
- 4. The thinner the thickness of the iron yoke plate of the barrel yoke, the larger the deformation of the weight of the barrel yoke;
- 5. Modify the thickness of the iron plate of the barrel yoke, which can reduce the self-weight deformation of the barrel yoke;
- 6. The more fixed supporting surface at the bottom of the barrel yoke, the smaller self-weight deformation of the weight of the yoke;

- 1. Combine with the gravity of the internal detector and magnetic force
- 2. Deformation simulation and Analysis
- 3. Structure optimization.

THANKS !