

FCC-ee collimation scheme

A. Abramov, K. André, G. Broggi, R. Bruce, M. Hofer, S. Redaelli

CEPC workshop 2023, Nanjing, China – 26/10/2023

Many thanks to:

M. Boscolo, H. Burkhardt, F. Carlier, A. Ciarma, Y. Dutheil, P. Hunchak, G. Iadarola, A. Lechner, G. Lerner, L. Nevay, M. Moudgalya, K. Oide, A. Perillo Marcone, T. Pieloni, R. Ramjiawan, T. Raubenheimer, S. White, F. Zimmermann

Collimation for the FCC-ee

- The FCC-ee is the FCC first stage e+e- collider
 - 90.7 km circumference, tunnel compatible with the FCC-hh

 - The stored beam energy reaches 17.8 MJ for the 45.6 GeV Z mode, which is comparable to heavy-ion operation at the LHC

The FCC-ee presents unique challenges

- Such beams are highly destructive: a collimation system is required
- The main roles of the collimation system are:
 - Protect the equipment from unavoidable losses
 - Reduce the backgrounds in the experiments
- The beam halo collimation system was studied, and a first baseline design was developed

Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (<u>talk</u>)

FCC-ee collimation system

- Two types of collimation foreseen for the FCC-ee:
 - The beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation near the IPs
- Halo collimation in a dedicated insertion
 - Two-stage betatron and off-momentum collimation systems in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Collimation optics (M. Hofer) and collimator parameters (G. Broggi)
- Synchrotron radiation collimators around the IPs
 - 6 collimators and 2 masks upstream of the IPs (K. André)

FCC-ee aperture

- The aperture bottlenecks are in the experimental interaction regions (IRs)
 - Depend on the optics, layout, and mechanical aperture in the IRs
- The bottlenecks must be protected
 - The final focus quadrupoles are superconducting and there is a risk of quenches
 - The detector is sensitive to backgrounds from beam losses
 - The SR collimators and masks are not robust to large direct beam impacts, can also produce backgrounds

Aperture bottlenecks for the different operating modes

FCC-ee halo collimation

- Collimator parameters and settings
 - Preliminary collimator parameters selected to optimize the collimation cleaning performance (G. Broggi)
 - Settings selected to protect aperture bottlenecks
 - The settings of the SR collimators are driven by MDI power loads, but are constrained by the halo collimation settings
 - The collimation hierarchy margins are tight

Туре	Plane	Material	Length [m]	Gap $[\sigma]$
β prim.	Н	MoGr	0.4	11.0
β sec.	Н	Mo	0.3	13.0
β prim.	v	MoGr	0.4	65.0
β sec.	V	Mo	0.3	75.5
δ prim.	Н	MoGr	0.4	29.0
δ sec.	Н	Mo	0.3	32.0
SR BWL	Н	W	0.1	18.6
SR QC3	Н	W	0.1	16.7
SR QT1	Н	W	0.1	14.6
SR QT1	V	W	0.1	196.4
SR QC2	Н	W	0.1	14.2
SR QC2	V	W	0.1	154.2

Collimator parameter and settings for the Z mode

FCC-ee beam loss scenarios

- The FCC-ee will operate in a unique regime
 - Electron / positron beam dynamics and beam-matter interactions
 - Stored beam energy exceeding material damage limits
 - Superconducting final focus quadrupoles, crab sextupoles, and RF cavities
 - Must study the beam loss processes and define the ones to protect against
 - Must study the equipment loss tolerances, for both regular and accidental losses
- Important loss scenarios for particle tracking studies:
 - Beam halo Current studies
 - Top-up injection
 - Spent beam due to collision processes (Beamstrahlung, Bhabha scattering)
 - Failure modes (injection failures, asynchronous dump, others
 - Beam tails from Touschek scattering and beam-gas interactions

Setting up studies

FCC-ee collimation simulations

- The FCC-ee presents unique challenges for collimation simulations:
 - Synchrotron radiation and magnet strength adjustment (tapering) to compensate it
 - Complex beam dynamics strong sextupoles in lattice, strong beam-beam effects (Beamstrahlung)
 - Detailed aperture and collimator geometry modelling
 - Electron/positron beam particle-matter interactions
 - Large accelerator 90+ km beamline
- Xsuite + BDSIM (Geant4) coupling
 - Developed for the collimation simulations in the FCC
 - Benchmarked against other codes for FCC-ee MAD-X, pyAT, SixTrack-FLUKA coupling
 - Xsuite-FLUKA coupling first release is available (LHC collimation and FLUKA teams)

Current study: beam halo losses

• "Generic beam halo" beam loss scenario:

- Specify a minimum beam lifetime that must be sustained during normal operation
 - Preliminary specification of a **5 minute** lifetime
- Assume a slow loss process halo particles always intercepted by the primary collimators
- The loss process is not simulated, all particles start impacting a collimator
 - Track the particles scattered out from the collimator and record losses on the aperture
- Currently using 1 µm impact parameter as standard
 - Selected to give a conservative performance estimate
 - Impact parameter scans ongoing

Beam halo losses for the Z mode

- The Z mode is the current focus (Beam 1, 45.6 GeV, e⁺),
 17.8 MJ stored beam energy
- The 5 minute beam lifetime \rightarrow total loss power 59.2 kW
- Radiation and tapering included
- 3 cases considered:
 - Horizontal betatron losses (B1H)
 - Vertical betatron losses (B1V)
 - Off-momentum losses $\delta < 0$ (B1-dp)
- For the off-momentum case, using a tilted collimator, aligned to the beam divergence

Beam halo losses for the Z mode

- The beam collimation system shows significant loss suppression
 - More than 99.96% of losses contained within the collimation insertion PF, only up to 1.7 W reaching any IR
 - Tilted primary collimators are essential for the performance at the Z mode
 - Energy deposition studies and thermomechanical studies are required for the collimators and most exposed magnets
- Collaborative studies ongoing:
 - IR loss optimization (G. Broggi)
 - Detector backgrounds (A. Ciarma)
 - Impedance (M. Migliorati)
 - Energy deposition & thermomechanical studies (G. Lerner, R. Andrade)
 - Detector backgrounds (A. Ciarma)

Z-mode betatron halo loss maps for selected regions

Z mode losses on SR collimators

- The SR collimators intercept losses for all cases
 - Highest load on BWL and C3 horizontal collimators, up to 0.4 W
 - Lowest load on the vertical T1 collimator

FCC-ee collimation summary

- Studies of beam losses and collimation for the FCC-ee
 - First collimation system design available, including beam halo and SR collimators
 - Simulations of beam loss scenarios ongoing
 - Beam halo losses studied for the most critical Z mode, no show-stoppers identified
 - Collaboration with the MDI, impedance, engineering, FLUKA studies team
 - Input on equipment loss tolerances needed to optimize performance
 - Studies ongoing of an updated collimation system design
- Next steps
 - Study other beam loss scenarios failure scenarios, spent beam, top-up injection
 - Obtain input for the equipment loss tolerances superconducting magnets, collimators, other
 - Energy deposition studies required for magnets, collimators, and masks
 - Tolerance of the detectors to backgrounds required
 - Study all beam modes

Thank you!

