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e Successor of KEKB, planned to take 50x the

dataset of KEKB+B611€ Interaction
Region Belle Il detector
o Asymmetric ete™ collider with Eom = 10.48 GeV <\ =~

e B-factory precision machine at luminosity frontier
to measure CPV

o Design Luminosity: 60 x 10** cm™?s™*

o World record (Juni 2022): 4.7 x 10%* cm™2s~!
electron / positron
e Continuous top-up injections every 20 ms linear injector

necessary due to short beam lifetime (~ 30 min)

e Problems: Beam background too high and
injections losses (dynamic aperture)



Introdution: Beam background
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e o< Current, pressure in beam pipe

Touschek scattering: Intra-bunch Coulomb scattering
o Current?, 1/number bunches, 1/bunch volume

Beam-gas: Interactions of particles with residual gas molecules

QED background: Radiative Bhabha
Two-photon interactions
— particles in Belle II

 instantaneous luminosity

Noisy bunches: Betatron oscillations
of injected bunches lead
to high background

Injections every 20 ms
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o Interprete hit rates as product of heuristic G1-Gs and sensitivity S1-Ss

Heuristics describe known dependencies, e.g. beam pipe pressure, current

Many state variables of unknown dependencies, e.g. collimator positions

e Neural networks parametrize the sensitivities/unknown dependencies

o The measured full hit rate O is obtained by adding all contributions

0= Obeam—gas, -+ OTouschek, H+ Obeam—gas, L+ OTouschek, L+ Oinj, -+ Oinj, L+ Olumi + Oped
Obeam-gas, (/1) = S(1/3) X Lu/r) Py = Says) X Gays)

2
1tu/L)
Ty, (1 /1) O, (/1) Oy, (1 /1) Oz, (H /L)

Otouschek, (H/L) = S(2/4) X = S/a) X G(2/4)

Ohnj, 1 = S5 X G5
Omj, L = S6 X Gs
Olumi = S7 X L

Oped = Ss



Use 1 Hz time series of
SuperKEKB variables

Calculate analytical heuristics

Use neural networks for
sensitivities
Neural networks are trained

simultaneously

Dense layers with tanh/softplus
activation
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Test of background decomposition

o Fast current logger of CDC records leakage current
at 1000 Hz: Can resolve injections

Resample frequncy: 1s

o Need to resample fast current logger to compare 4 Resle frncy
. o —+ Fast CDC curren logger
with BGNet predlctlon 1 —— CDC CUR AVERAGE
B LER Injection
BN HER Injection
B Storage-+Lumi+Pedestal

e Injection background falls to zero between
injections: fit baseline through minima

CDC CUR AVERAGE [A]

e Separate storage+lumi+ped and injection
backgrounds for CDC




o Feature attributions quantify the impact on the model prediction of a change of input values

o The change of input values is measured between a reference and a test set

= If the model follows a change in measured hit rates then the responsible input(s) can be identified

o Example: A collimator scan of DO6V1 after a beam abort that damaged the collimator

Resample frequency: 15
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EPICS Network
Publish Read Publish
- via PCASpy via pyEPICS via PCASpy
Load Request
Replay PC BGNet PC < "| Model Server
Prediction

- - Read input PVs once a second

- Archive holds historic data from - Send request to model server

2022 that is replayed - Publish predictions to EPICS network

- Publish all relevant PVs once every
second



Sensor
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o A neural network for the decomposition of beam backgrounds was implemented

The results are published in NimA BGNet Paper

Feature attribution methods can be used to identify important variables

Demonstrator for the real time application using EPICS+BGNet was succesful with latencies <1s
o CS-Studio displays were creared to communicate BGNet results to machine operators
e Setup is installed and integrated at KEK and tested once long shutdown 1 is over (beginning 2024)

e Implement technical and visual improvements

10


https://arxiv.org/abs/2301.06170
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Display - Spatial
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Display - Overview

Measured+Total BGNet
and hit rate decomposition
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e Data from EPICS slow control system is
not synchronized

o Use weighted average of two data points
to correct

o Repeat training for different delays and
use training with smallest loss

— Diamond detector dose rate  ---- Shift=1s

RS

—— shift=3s |
/ WA\ I\
s 30

~

L
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Diamond detector dose rate [mRad/s]
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e Data from EPICS slow control system is
not synchronized

o Use weighted average of two data points
to correct

o Repeat training for different delays and
use training with smallest loss
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Extrapolation

o Model extrapolation using data during June 2021

o Off-resonance referes to data taking with energies other than Y (4S5) resonance

175 Resample frequency: 5Smin
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< Train 1 re Test | mmm BGNet HER injection
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o Built model using heuristic scaling laws
o Explore the possible insights into the background composition BGNet can provide

e For more information see our paper:

Title: A neural network for beam background decomposition in Belle IT at SuperKEKB
NimA: Volume 1049, April 2023, 168112

Going forward:

o Exploit scaling properties of background to use one network for multiple sub-detectors
o Implement real-time display for use by SuperKEKB operators

o Help control room operators to optimize background conditions

19


https://arxiv.org/abs/2301.06170

Training as
Batch Job
T

TensorFlow Extended

Serving as
Service with
current models

& +
docker

Data via Client API calls

Data (Buckets)

Could feed total rate
and decomposition
back into SKB Archiver
- easy integration and

accessibility

TensorFlow Hub
Blessed

Model
>
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Predictions

Reports

Live feed
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e Set up BGNet decomposition as live-feed accessible in KEK control room
o Obtain live values from EPICS network
e Do inference with tensorflow model server

e Ingest decomposition back into EPICS network

API call with Request (latest)
Data for prediction model
EPICS Model DB
Request data . 2
for prediction Data: Decomposition,

attributions, sensitivities
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Explain backgrounds

o Use feature attribution to explain oscillations in injection duration

e Path Explain: arXiv:2002.04138, https://github.com/suinleelab/path_explain

o Test set z, reference set ' — compare f(x) to f(z'), y = f(z) functional representation of NN

o Then ask how much individual inputs x; (i-th input variable) contribute to difference f(z) — f(z')

Attributions;(x) = / ((xl —

=0 0x;

) x /al Ol el = x/))da) pp(x')ds’ ]

/1 §f(z' + ax — x’))da

=0 0x;

o Instead of calc. attribution at x or
x’, calc. along shortest path

o Retains completeness

o Entire expression model agnostic
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o Mean absolute value of the attribution per input feature ranks the variables

o The color gradient describes the relative numeric value of the input variable

o Explaining which inputs changed from minimum to maximum
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Barrel KLM

End-Cap KLM

Asymmetric 4m-coverage detector
2 ns bunch spacing

Tracking: VXD (pixel and double-sided strip
detector) + CDC

Particle ID: TOP and ARICH
ECL delivers energy and position measurement
K1, and muon detector in barrel and end-cap region

Radiation monitoring with single-crystal diamond
sensors



o Use heuristic scaling laws G; multiplied with unknown sensitivity S;
o Regression target: Belle II detector hitrates O
e Training data: SuperKEKB variables describing machine state

O = Obeam—gas, H+ OTouschek, H+ Obeam—gas, L+ OTOuschek, L+ Oinj, H+ Oinj, L+ Olumi + Oped (1)

Obeam-gas, (/1) = S(1/3) X Lm/L) Py = Says) X Gays) 2)
2

Oouschek, (H/L) = S(2/4) X nb,(H/L)Uz,(HjS;I;'I;),(H/L)Uz,(H/L) = S(2/1) X G(2/4) (3)

Oinj, u=2955xGs (4)

Oinj, L =256 X Gsg (5)

Otumi = S7x L (6)

Oped = 58 (M)

e o are bunch sizes, £ is the inst. lumi.

e G5 and Gg are 1 during top-up injections and 0 otherwise
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Get selected subset of SuperKEKB variables
Calculate heuristic features G;

Training loss is MAE of predicted and
measured hit rate

Outputs of last three layers are available:
sensitivities, background components, total
predicted hitrate

Compute the predicted
Hitrate O, for component i

f
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Output S

M;p vector onto
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V=[3,1,2,m]

Dense Dense

|

Neural network layer

_ Gather | Gather ]l _ Gather
S, S, 8
HER beam-gas| HER injection Pedestal

Inputs from EPICS slowcontrol network

Layer
class
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Asymmetrischer 47 Detektor
2 ns bunch spacing

Tracking: VXD (pixel und double-sided strip
Detektor) + CDC

Particle ID: TOP und ARICH
ECL liefert Energie- und Positionsmessung

K1, und Myon Detektor in der barrel und end-cap
Region

IR
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