

Tracking with Quantum Computers for Future Colliders

International Workshop on the High Energy Circular Electron Positron Collider, October 23-27, 2023, Nanjing University

大川 (Okawa) 英希 (Hideki)

中国科学院高能物理研究所 (Institute of High Energy Physics, CAS)

Studies from H. Okawa, arXiv:2310.10255

High Luminosity LHC & Beyond

- At the HL-LHC, we will enter the "Exa-byte" era.
 Annual computing cost will increase by a factor of 10-20
- <u>Without various innovations, the experiment</u> will not be able to operate. GPUs and other state-of-the-art technologies will be the baseline at the HL-LHC.
- Quantum computing may bring another "leap".
- Two of the highly CPU consuming components: (1) track reconstruction for both data/simulation & (2) simulation of shower development in the calorimeter.
 → Xiaozhong Huang will present the latter after my talk.
- Tackling these challenges will also be useful for other future colliders, such as CEPC & SppC etc.

Track Reconstruction at LHC & HL-LHC

ATL-PHYS-PUB-2019-041 Time/Event [a.u.] CMS Simulation, vs = 13 TeV, tt + PU, BX=25ns 450⊦ HS06 × seconds per Event Full Reco Current Track Reco Current ATLAS Simulation Preliminary 400 Full Reco Run1 --- Track Reco Run1 ITk Layout, tt events PU140 350 - ----- Total ID Run-2 Reconstruction 50 ------ Track Finding (Run-2) 300 ------ Ambiguity Resolution (Run-2) 40 250E 200E 30-150⊨ 20 100E **PU70** 50 10 PU40 **PU25** 50 100 150 200 <µ> Luminosity [10³⁴ cm⁻² s⁻¹]

	Run 1	Run 2	HL-LHC
μ	21	40	150-200
Tracks	~280	~600	~7-10k

- At the HL-LHC, additional interactions per bunch crossing becomes exceedingly high & <u>CPU time</u> <u>blows up with more pileup</u>.
- GPU & ML-based approaches could be considered as a baseline, but quantum ML may play an important role.

https://cds.cern.ch/record/1966040

Classical ML Approaches

- There are also studies using CNN & Point Net at BES-III
- Silicon hits can be regarded as "nodes" & connected segments as "edges"
- Computing time scales linearly with number of tracks

1.25 •

,0000

30000

Number of spacepoints

Quantum Approach: QUBO

F. Bapst et al. Comp. Soft. Big Sci. 4 (2019) 1.

 $= -S_{ii}$ (if two hits are shared)

- Triplets (segments w/ 3 hits) are formed from doublets (segments w/ 2 hits).
- Triplets are used to reconstruct tracks & can be regarded as a guadratic unconstrained **binary optimization (QUBO)** problem. (QUBO matrices for tracking is generally sparse)
- Minimizing QUBO is equivalent to searching for the ground state of the Hamiltonian.

Quantum Annealing Approach

- Quantum annealer looks for the global minimum of a given function with quantum tunneling: a natural machine to search for the ground state of a Hamiltonian.
- D-Wave currently provides 5000+ qubit service (7440 qubits may be available in 2024).
- Pros: High number of qubits available (concept fundamentally different from quantum gates).
- Cons: Can only run QUBO problems. Also, not suitable for very small minimum energy gaps, as the computing time explodes to remain adiabatic.

Previous Studies w/ Q. Annealing

- Previous studies w/ 1000-qubit machine show that efficiency is almost stable w/ # of particles, but purity (precision) degrades.
- Simulator provides consistent results w/ hardware!
- There are also ongoing studies in LHC-ATLAS experiment implementing GNN w/ annealers.

International Workshop on High Energy CEPC 2023

Running on Quantum Gates

 QUBO can be mapped to Ising Hamiltonian and be solved using Variational Quantum Eigensolver (VQE) or Quantum Approximate Optimization Algorithm (QAOA) w/ quantum gates.

$$\mathcal{H} = -\sum_{n=1}^{N} \sum_{m < n} \bar{b}_{nm} \sigma_n^x \sigma_m^x - \sum_{n=1}^{N} \bar{a}_n \sigma_n^x$$

- Previous LUXE studies considered VQE w/ TwoLocal ansatz w/ R_Y gates & circular CNOT entangling pattern w/ IBM (A. Crippa et al., arXiv:2304.01690, L.Funcke et al., arXiv:2202.06874)
- QAOA did not perform well & optimization was left for future studies. → A scope of this talk

Dataset (TrackML)

- TrackML is an opensource dataset prepared for TrackML Challenges.
- It is designed w/ HL-LHC conditions. It includes noise & holes.
- Continues to be useful for individual studies including quantum tracking.

https://www.kaggle.com/c/trackml-particle-identification

Thanks to Andreas Salzburger for suggestions

QAOA in Origin Quantum (本源)

- VQE & QAOA libraries implemented in pyqpanda-algorithm by Origin Quantum (本源).
- Adopts Quantum Alternative Operator Ansatz for QAOA.
 Conditional Value-at-Risk
- Can utilize CVaR (P. Barkoutsos et al., Quantum, 2020, 4: 256) or Gibbs (L. Li et al., PR Research 2, 023074 (2020)) loss function.
- 6 qubit machine (Wuyuan 悟源) used for the real hardware computation in this talk.

An example of circuits from the actual run

Chip Status: Online		Average single-qubit g	ate fidelity: 0.9996	
Number of tasks waiting to	be calculated: 0	T1 Average: 20 μs	Т1 Average: 20 µs	
Chip Operating Temperature: -273.14 °C		T2 Average: 9 μs		
Basic Logic Gate: U3、CZ		Maximum number of runs: 10000		
Average Fidelity of single-qubit gate The average fidelity is 0.99915		 Average fidelity of CZ gate The average fidelity is 0.9808 		
	max: 0.9993	min: 0.9707	max: 0.0000	

QAOA Optimization

- QAOA does not perform well w/ shallow layers. Compatible performance b/w hardware & simulator.
- L-BFGS-B optimizer is better than SLSQP. TNC has degraded performance & not shown here.
- No significant difference b/w CVaR or Gibbs loss function.
- Probability saturates around 7 layers for L-BFGS-B cases.

QAOA Accuracy

- Note that the probability is NOT the accuracy of QAOA.
- A single job runs multiple measurements (or can use the amplitudes for the simulator), ranks the answers by probability & select the highest probability state as the answer.
- The accuracy already reaches 100% within the statistical uncertainty at 5 layers.
- For further studies, a conservative choice of 7 layers is used.

Sub-QUBOs

- Number of qubits required is determined by the number of triplet candidates → Obviously cannot cover the full QUBO for tracking in the NISQ era
- QUBO is split into sub-QUBOs of size N (N=7 in previous LUXE studies for IBM machine).
 Here, I used N=6 to match with OriginQ hardware.

International Workshop on High Energy CEPC 2023

- There are various sub-QUBO algorithms proposed: qbsolv (now in dwave-hybrid library), for example.
- I adopted a sub-QUBO method using multiple solution instances from Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606.

Multiple Solution Instances

- 3 parameters (N_I, N_E, N_S) in this sub-QUBO method.
- Extract N_I quasi-optimal solutions from full-QUBO classically.
- Randomly select N_s solution instances from N_l .
- Focus on particular binary variable x_i. Rank them in accordance to how much they vary over N_s solution instances. Highly varying x_i will be included in the sub-QUBO model.
- Pick-up process of N_S solution from quantum computing is repeated N_E times & N_E sub-QUBO models are considered.
- Returns a pool of $N_{\rm l}$ solutions & the best solution will be chosen.

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

Preliminary sub-QUBO Results

- Ran measurements to compare the performance and stability. 7 layers used in QAOA.
- No significant dependence on (N_I, N_E, N_S) & compatible performance between Origin Quantum simulator & Wuyuan hardware!
- <u>Visible improvement w/ sub-QUBO compared to the simulated annealing only!</u>

Track Efficiency & Purity

- QAOA+sub-QUBO provides compatible performance as previous quantum annealing studies.
- Fake rate is around 0.01-0.02% throughout.
- No sign of degradation in the Origin Quantum Wuyuan hardware

Event Displays (w/ Wuyuan)

Summary

- Tracking is a highly CPU-consuming task at the HL-LHC era & beyond. Classical ML methods are bringing in promising improvement.
- Another leap from quantum machine learning would be highly exciting.
- Pursued the quantum tracking using Origin Quantum simulator & Wuyuan hardware. The sub-QUBO model + QAOA shows promising performance.
- Further investigations are ongoing. Stay tuned!

谢谢聆听! Thank you for listening! Thanks to Federico Meloni & David Spataro for discussions & Origin Quantum (本源) for feedback & computing resources!

Backup

QUBO

H. Okawa, arXiv:2310.10255 & Lucy Linder's Master thesis

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j,$$

$$S_{ij} = \frac{1 - \frac{1}{2} (|\delta(q/p_{T_i}, q/p_{T_j})| + max(\delta\theta_i, \delta\theta_j))}{(1 + H_i + H_j)^2},$$

A T

$$a_i = \alpha \left(1 - e^{\frac{|d_0|}{\gamma}} \right) + \beta \left(1 - e^{\frac{|z_0|}{\lambda}} \right),$$

- $b_{ij} = 0$ (if no shared hit), = 1 (if conflict), = $-S_{ij}$ (if two hits are shared)
- α , β , γ and λ are tunable parameters, taken to be 0.5, 0.2, 1.0 and 0.5

D-Wave Studies

Lucy Linder's Master thesis

• Impact of parameters in the bias weights a_i