Quantum GAN for fast calorimeter simulation

Xiaozhong Huang, Weidong Li IHEP

> CEPC 2023 2023/10/26

Why we need fast calorimeter simulation ?

HL-LHC huge computing resources \odot MC simulation account for ~50% (dominated by calorimeter)

- Fast calorimeter simulation: help overcome the computational challenge

Fast calorimeter simulation

Geant4: incoming particle -> physics process in the detector-> energy Geant4 deposition

- accurate results, but time-consuming
- complex geometry
- number of secondary particles grows quickly

fast simulation: incoming particle -> energy deposition) parameterization GAN (ATLAS)

QC is an alternative to classical computing QC + GAN: the potential to out-perform classical GAN

fast simulation

Quantum computing

- Quantum computing: superposition, entanglement
 - $^{\odot}$ N bits, could represent 2^{N} states, contain the information of one state
 - $^{\mbox{\tiny \ensuremath{\wp}}}$ N qubits, could represent 2^N states, contain the information of all the states

10⁵ 10^{4} Quantum Volume 0 0 0 3 QV 512 - Prague QV 256 - Prague QV 128 - Montreal QV 32 - Paris QV 64 - Montreal OV 16 - Johannesburg 10¹ OV 8 - Tokvo 10^{0}

IBM

Quantum GAN

Two kinds of quantum GAN

- Quantum generator + classical discriminator
- quantum generator + quantum discriminator

R: Real Data

INISQ

- noisy and unstable qubit
- \sim number of qubits: [~10, ~10²]

image source

<u>ator</u> ator

D: Detective

update parameters

G: Generator (Forger)

I: Input for Generator

Current status

CERN QTI started to investigate quantum GAN about 3 years ago (link) (CERN & DESY)

^{\bigcirc} research strategy: 1D → 2D → 3D

current states: 1D and 2D fast calorimeter simulation

2D: 8x8 pixels 6 qubits ($2^6 = 8 \times 8$)

Research strategy

Collaboration: IHEP & DESY

CLIC open data

^{\subseteq} target: average shower shape (done) \rightarrow event fluctuation (ongoing)

- ^{\bigcirc} dataset: down sampling, 1D (8 pixels) \rightarrow 2D (pixels) \rightarrow 3D
- $^{\ensuremath{\wp}}$ backend: ideal simulator ightarrow noisy simulator ightarrow quantum computing cloud

event fluctuation (ongoing) \rightarrow 2D (pixels) --> 3D tor \rightarrow quantum computing cloud

1D quantum generator model

- Generator model consists of H, RY, and CZ
 - $\cong H: 0 \rightarrow 0$ and 1
 - Second secon
 - GZ: entanglement
- Frequency of the 8 states -> energy deposition of the 8 pixels

 - obtain the frequency of the 8 states with multiple shots

\bigcirc one of the eight states each shot: 000 \rangle , 001 \rangle , 010 \rangle , 011 \rangle , 100 \rangle , 101 \rangle , 110 \rangle , 111 \rangle

PDF

 \cong 3 qubits (8 pixels) \rightarrow 6 qubits (64 pixels)

 $^{\odot}$ 2 layers of RY + CZ \rightarrow 3 layers of RY + CZ

2D quantum generator model

1D performance (ideal simulator)

Training GAN is difficult: vanishing gradient, mode collapse, instability

2D performance (ideal simulator)

Training GAN is difficult: vanishing gradient, mode collapse, instability

training time< 2h

instability training time > 5d

1D: Impact of the noise on the training

Simplified noise model: consider the double qubit gate error and readout error

- same noise level for all qubits (hardware: noise level depends on the qubit)
- \leq symmetrical readout error (hardware: 0) fidelity differs from 1) fidelity)
- Invise level does not change (hardware: noise level changes)

Low level noise (< 2%) could improve the performance

1D: Impact of the noise on the model inference

ID generator model is simple

- impact of the double qubit gate error is comparable with the readout error
- Sector Secto

parameters obtained by training on the ideal simulator

% noise level

1D performance (hardware)

Access the hardware via the <u>quantum computing cloud</u> performance looks good and consistent with the noisy simulation

Summary and Plan

- ideal simulator, noisy simulator, and hardware \odot 1D: 3 qubits -> 8 pixels
 - \odot 2D: 6 qubits -> 64 pixels
- Compared to DESY's result, the training is more stable and faster \odot training time for 2D data: 5d -> 2h
- Search Future plan
 - $^{\odot}$ current model could only generate the average PDF \rightarrow try other models
 - Itraining on the hardware is time-consuming Set try simplified optimizers, e.g. SPSA
 - hybrid classical and quantum computing

Successfully generate 1D and 2D average shape energy distribution on the

Thank you!

backup

2D: Impact of the noise on the model inference

2D model is more complicated

- impact of double qubit gate error is large
- Set with a 2% noise level
 Set with a 2% noise level

parameters obtained by training on the ideal simulator

2D performance (<u>quantum computing cloud</u>)

- Run test on the real hardware with the parameters trained on the ideal simulator could generate the PDF in general
 - suffers from the hardware noise

1D

Loss

DESY: Cross-entropy IHEP: W distance with GP

2D

relative entropy

epoch

On Stabilizing Generative Adversarial Training with Noise

