
Status and future plans of 
DIRAC

Federico Stagni
DIRAC technical coordinator

CEPC 23, 26th October 2023 



2

● The previous week we were in Tsukuba for 
the DIRAC&Rucio Workshop 2023

○ the first of these workshop types
● This presentation builds on the workshop’s 

content
○ I won’t talk much about Rucio



● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources 

● Developed by communities, for 
communities

○ Open source (GPL3+), GitHub hosted
○ Python 3
○ Publicly documented, yearly users workshops, open 

developers meetings and hackathons 
○ Deployed mostly via Puppet on VMs (really, not 

bound to any specific technologies)

● The DIRAC consortium as 
representing body

3

Slide that I have 
been presenting for 
years, with minimal 

variations

What’s DIRAC?

Are things 
about to 
change?

Yes, but not 
fully

https://github.com/DIRACGrid
http://dirac.readthedocs.io/en/latest/index.html
https://indico.cern.ch/event/852597/
http://indico.cern.ch/category/4205/
https://indico.cern.ch/category/4205/


Today’s DIRAC (py3) stack

DIRAC WebAppDIRACDIRACOS2 Pilot

Conda-based 
package 

“manager”

Client and 
Server code

What holds the 
business logic

ExtJS6 + 
python layer

“The Pilot that 
flies in all the 

skies”

DB12diraccfg WebApp
Resourcestornado

NB: the py2 stack is deprecated



DIRAC v8.0 (production)

● Abandoned Python 2
● Added support for IdPs (IaM, Check-IN)

○ Can use tokens for submitting pilots to CEs 
● Monitoring capabilities expanded
● Expanded support for HPCs
● (computing) clouds support leveraging 

libcloud

5



Python3 and PyPI

6

● DIRAC releases using standard pip package manager, 
found on PyPI
○ extensions had to adapt (already in DIRAC v7.3)

● Deployed in a conda environment created by DIRACOS2 
installer
○ which provides Python 3.11

● Support for platforms ppc64le and aarch64 (in addition to 
the more common x86_64) have also been added
○ through conda/mamba



Tokens support
Basically: trying to respect 

the WLCG timeline

7

https://doi
.org/1

0.5281/zeno
do.701

4668

DIRAC v8 adds 
client_credentials flow for 

submitting pilots

FTS only?

Interfacing with IAM and EGI 
Check-IN IdP

https://doi.org/10.5281/zenodo.7014668
https://doi.org/10.5281/zenodo.7014668
https://doi.org/10.5281/zenodo.7014668


Monitoring

● Added support for OpenSearch 
(ElasticSearch support was 
already there), which also 
becomes the favourite option
○ dropped ES6 support

● Added several OpenSearch 
indexes that can be filled in

● Added dashboard definitions for 
Kibana and grafana

● removed gMonitor and the 
Framework/Monitoring 
service (“ActivityMonitoring”)

8



HPCs: choosing the right approach

9



Cloud CE

10



DIRAC v9.0

● Postponed to Jan 2024
● Abandoning the concept of “Setup”

○ several changes/simplifications at CS and DB level
● The last of DIRAC releases!

11



DIRAC issues
● complex, with high entrance bar

○ got better dropping python2 compatibility
● somewhat cumbersome deployment

○ got better dropping python2 compatibility
● late on “standards”

○ http services
○ tokens
○ monitoring

● “old”-ish design (RPC, “cron” agents…)
● not very developer-friendly

○ rather un-appealing/confusing, especially for new (and young) developers
● multi-VO, but was not designed to do so since the beginning
● no clear interface to a running DIRAC instance

12



The list can go on
● the WebApp is highly custom, and somewhat un-maintainable

○ with an intermediate python layer
● runsv is “dead”, we create the RPMs…
● DIRAC’s plotting is “old-ish”
● Moving to JSON serialization quite painful
● Upgrades are not always easy, and sometime scary
● …

● we have been accumulating problems for years
● out there the world evolved in different directions (e.g. REST APIs)

13



Some DIRAC developments

● Done: Python 3
○ py3 clients supported since version 7.2 (pip installable)
○ py3 server supported since version 7.3
○ py2 support ended with 8.0 (released last week)

■ with some obvious exceptions of part of pilots code

● Done: ES/kibana/grafana dashboards
● Ongoing/advanced: dips:// → https:// 

○ dips: DIRAC proprietary protocol for RPC calls
○ http: based on tornado
○ most DIRAC services already available using HTTP

■ we said that http would be the default for all the DIRAC services from version 9.0

● Ongoing: token support, and IdP (IaM, Check-in)
● Ongoing: running on kubernetes (goal: define a helm chart)
● Started: using celery and RabbitMQ (retiring executors)

14

https://www.tornadoweb.org/en/stable/


➔ It felt like we were at the end of a technology 
cycle.

➔ in order to keep the project successful we 
are creating the neXt dirac incarnation in 
what we dubbed project “DiracX”[*]

[*] incidentally “X” == 10 (in Roman numbers)
15

Keeping the project successful



DiracX in just one slide

➢ A cloud native app
➢ Multi-VO from the get-go
➢ Standards-based
➢ Not a framework

16



17

and much 
more



(in dev) DiracX stack

DiracX DiracX Web UIDiracX-charts Pilot

Helm charts for 
running DiracX 

services

The neXt 
DIRAC 

incarnation

What holds the 
business logic

A modern 
WebApp:

“just another 
client”

The same 
DIRAC Pilot 
(adapted, of 

course)

DB12DIRAC

18



19

A transitioning 
plan is laid out 
(see backup 

slides)



Timeline

20

v8.0

DIRAC 
stack

May 2022

NOW, Oct 
2023

v9.0

Jan 2024

DiracX 
stack

demo
(on v9.0.0aX) v0.1.0

Stop 
support 

v7.3

(next WS?)

Stop 
support 

v8.0

DIRAC+X
certifications

 

Using DiracX services

...at some 
point

Stop 
support 

v9.0



Rucio?

21



To conclude

22



23

Exciting and busy time
● Rewriting DIRAC

○ WMS functionalities will come first
○ you are very welcome to come onboard
○ your input is needed: 

https://github.com/DIRACGrid/diracx/discussions

● DIRAC v9 will be the bridge for getting there
○ We’ll try to ensure stability as much as possible

● We hope CEPC computing will follow in the steps of BES3 
and Juno and use Dirac(X)

https://github.com/DIRACGrid/diracx/discussions


Questions?
https://github.com/DIRACGrid

● DIRAC’s doc: dirac.readthedocs.io
○ including code documentation

● DiracX’s doc https://github.com/DIRACGrid/diracx/tree/main/docs
○ We might use RTD also for DiracX

● Dev+Ops+general questions: 
○ DIRAC github discussions
○ DiracX github discussions

■ DiracX-Web discussions
■ for speedy communications: https://mattermost.web.cern.ch/diracx/

24

https://github.com/DIRACGrid/diracx
https://dirac.readthedocs.io
https://dirac.readthedocs.io/en/latest/CodeDocumentation/index.html
https://github.com/DIRACGrid/diracx/tree/main/docs
https://github.com/DIRACGrid/DIRAC/discussions
https://github.com/DIRACGrid/DIRACx/discussions
https://github.com/DIRACGrid/diracx-web/discussions
https://mattermost.web.cern.ch/diracx/


Backup

25



From DIRAC to DiracX

26



Transitioning (services)

27

DIRAC + DiracX 
DBs

DIRAC’s DIPS 
services

DiracX HTTPS 
services

Legacy 
adaptor

DIRAC 
client

Diracx 
client



Transitioning (services)

28

DIRAC + DiracX 
DBs

DIRAC’s DIPS 
services

DiracX HTTPS 
services

Legacy 
adaptor

DIRAC 
client

Diracx 
client

Being adapted 
to include the 

legacy adaptor

Could be 
already HTTPs REST-like

MySQL+OpenSearch

proxy token



Transitioning
(agents + executors)

Python celery + RabbitMQ

29

https://www.rabbitmq.com/https://docs.celeryq.dev/en/stable/g
etting-started/introduction.html

NB: we have not yet started coding for this!

Transitioning from DIRAC agents and executors to DiracX tasks should be easy and 
straightforward

https://www.rabbitmq.com/
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://docs.celeryq.dev/en/stable/getting-started/introduction.html


Transitioning stages
(extreme summary)

1. Update to DIRAC v9
a. this, effectively, means also installing DiracX

2. Run few services in DiracX
3. Activate the legacy adaptor

a. traffic for the selected services will be redirected to 
DiracX services

b. proxy → token behind the scene
4. You can now remove the legacy DIRAC 

services
30

Q1+Q2 
2024


