

Fast Simulation of the 4th detector at CEPC and analysis with it

<u>Xu Gao¹</u>, Qing Li¹, Gang Li², Weimin Song¹, Linghui Wu², Guang Zhao²

Jilin University¹ IHEP²

Outline

>Introduction

Detector configuration

- Track resolution
- Particle identification
- Calorimeter
- Jet clustering
- ≻Analysis : $B^0/B^0_s \rightarrow hh'$
 - Motivation and MC samples
 - Event selection
 - Result with PID and without PID

≻Summary

Introduction

• CEPC

- 240 GeV Higgs factory : 4×10^5 ZH
- + 91.2 GeV Z factory : 4×10^{12} Z
- 160 GeV WW threshold scan : 2×10^7 WW
- The 4th conceptual detector
 - Tracker with silicon trackers and a drift chamber
 - The chamber optimized for PID with dN/dx
 - PFA with scint glass HCAL and crystal ECAL

A fast simulation of the 4th conceptual detector is essential due to the large production!

Operation mode			ZH	z	W⁺W⁻	tī
\sqrt{s} [GeV]			~240	~91.2	~160	~360
Run time [years]			7	2	1	-
CDR (30 MW)		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107	-
Run Time [years]			10	2	1	~5
Latest	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	2×10 ⁷	5×10 ⁵

2023/10/27

Introduction

- Delphes is a tool that simulates the response of detector
 - $10^2 \sim 10^3$ faster than the fully GEANT based simulations
 - Sufficient and widely used for phenomenological studies
- For simulations of the 4th detector at CEPC:
 - Detector layout based on preliminary optimization
 - A dedicated PID module (dN/dx and TOF) developed
 - Consistent workflow for lepton/photon isolation and jet-clustering
- More details in https://github.com/oiunun/Delphes_CEPC.git

J. High Energ. Phys. 2014, 57 (2014)

2023/10/27

Track resolution

- Six layers of vertex detectors provide high resolution of impact parameters.
- A silicon inner tracker (SIT) cooperates with the VXD for vertex reconstruction.
- A set of forward tracking disks (FTD) increases the geometric acceptance of tracking system.
- A silicon external tracker (SET) and end-cap tracking (ETD) disks provide high precision position measurements of tracks entering the calorimetry system.
- Full covariance matrix is provided which can be used for vertex fit
- The resolution of Impact parameters and ^{10²} transvers momentum is shown in figures:

The result is consistent with full simulation!

2023/10/27

PID with dN/dx and TOF

Full simulation • Combine dN/dx and TOF with χ^2 • $\chi^{2,i} = \chi^{2,i}_{dN/dx} + \chi^{2,i}_{tof}$, i represent particle hypothesis dN/dx • probⁱ = $\int_{\gamma^{2,i}}^{\infty} f(x, 2) dx$, f(x, 2) is pdf of χ^2 that freedom is 2 • Identify particle by probⁱ e.g. identified as π : prob^{π} > prob^K && prob^{π} > prob^p ncl mean The latest result of full simulation of dN/dx : ncl_mean • dN/dx_{mean} vs. $\beta\gamma$ and $\cos\theta$ • dN/dx_{sigma} vs. $\beta\gamma$ and $\cos\theta$ Parameterize dN/dx in Delphes 20 Interpolate from full simulation cos 0.5 10³ bg^{10⁴} 10^{2} 0

10

0

 10^2 10^3 bg^{10⁴}

 σ_{tof} =30 ps

TOF

PID

ncl sigma

PID performance

- K/ π Separation power vs. full simulation
 - Sep= $\frac{|dN/dx_{\pi}-dN/dx_{K}|}{\frac{\sigma_{\pi}+\sigma_{K}}{2}}$
 - K/ π Sep vs. momentum (cos $\theta = 0$)
 - K/π Sep vs. $\cos\theta$ (p=10 GeV)
- Excellent agreement with full simulation
- PID efficiency and misidentification rate are shown:

PID in Delphes achieves expected performance by interpolating the results of full simulation !

2023/10/27

Calorimeter

Calorimeters provide energy of photon and neutral particle for jet clustering and lepton/hadron identification

2023/10/27

Jet clustering

- Jet clustering with the Fastjet package
 - ee-kt algorithm for ee collider
- Jet resolution for $e^+e^- \rightarrow Z(di-nu)H(di-jets)$
 - Without ISR
 - BMR < 4% due to confusion not included

Jet energy resolution a bit ideal

Analysis : $B^0/B_s^0 \rightarrow h^+ h'^-$

- Motivation
 - The study of charmless B meson $\rightarrow h^+h'^-$ decays plays an important role in the quest for BSM in the flavor sector
 - Good test platform to study impact of PID in flavor physics
 - Explore physics potential of Tera-Z
- MC Samples
 - Only consider main background ${\rm Z} \rightarrow b \bar{b}: 2 \times 10^9$ for now
 - Signal generator: pythia8, background generator: pythia6
 - Signal branch ratios adopted by PDG

Channel	Branch ratio	Yield ($Z \rightarrow b\overline{b} : 2 \times 10^9$)
$B0 \rightarrow \pi^+\pi^-$	5.12×10^{-6}	8335
$B0 \rightarrow K^{+}\pi^{-}$	1.96×10^{-5}	31909
$B0 \rightarrow K^+K^-$	7.8×10^{-8}	127
$Bs \rightarrow \pi^+\pi^-$	7.0×10^{-7}	283
$Bs \rightarrow K^- \pi^+$	5.8×10^{-6}	2343
$BS \rightarrow K^+K^-$	2.66×10^{-5}	10747

Event selection

- Background : $Z \rightarrow q\overline{q}$ (q is b, c, u, s, d)
- Jet flavor tagging with ParticleNet
 - Tagging two jet flavor in event level
 - High efficiency and purity
 - Remove most backgrounds from $Z \rightarrow q \bar{q} \; (q \neq b)$
 - Only consider backgrounds of ${\rm Z} \to b \overline{b}\,$ in the following
- Event selection
 - $Z \rightarrow b\bar{b} \rightarrow di$ -jets

- Select signal within each jet
- Reduce combinatorial background between 2 jets
- Cleaner background

The hadrons and subsequent

Event selection

- Select B0/Bs candidates in each jet :
- PID
 - π : $Prob(\pi) > Prob(K)$ && $Prob(\pi) > Prob(p)$
 - $K : Prob(K) > Prob(\pi) \&\& Prob(K) > Prob(p)$
- Momentum (phase space) cut for ${\rm h^+h^\prime}^-$
 - 0.4*LeadingE+subLeadingE>10 GeV
 - subLeadingPT>2 GeV
- Vertex Fit for $\mathrm{h^+h^\prime}^-$
 - $\chi^2 < 5$

•
$$\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} > 2500$$

Vertex Fit

Result with PID and without PID

Summary

- Simulation of CEPC the 4th detector ready to use
 - Tracking resolution is consistent with full simulation
 - PID with latest full simulation of clustering counting
 - Preliminary implementation of calorimeter system, reasonable resolution achieved.
- Physics sensitivity can be improved significantly with PID in flavor physics
- Future works:
 - Optimize PID by full simulation with Deep learning based algorithm
 - Optimize event selection for ${\rm B^0/B_S^0} \to {\rm h^+h'^-}$
 - Fit and get more information such as CP asymmetry for $B^0 \rightarrow K^+\pi^-$
 - More channels are ongoing such as $B^0 \rightarrow e^+e^-K^{*0}$

Thanks!