Status of the simulation software in CEPCSW

Tao Lin (on behalf of the software team) <u>lintao@ihep.ac.cn</u>

IHEP

CEPC workshop

27 Oct 2023, Nanjing

Introduction

- Simulation framework in CEPCSW
- Gaussino-based simulation framework
- Parameterized simulation: k4SimDelphes
- Summary

Introduction (1)

- New CEPC software (CEPCSW) prototype was proposed at the Oxford workshop in April 2019.
- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June, 2019.
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments

Introduction (2)

- As the first application based on Key4hep, following development activities had been initiated.
 - Development of k4LCIOReader: LCIO to EDM4hep converter
 - Migration of reconstruction algorithms
 - Development of simulation framework in CEPCSW
 - Validation between iLCSoft and CEPCSW.
- CEPCSW Tutorial and detector study, IHEP, 17-18 Sept 2020
 - Covering underlying framework, DD4hep, detector simulation and reconstruction within CEPCSW
 - <u>https://indico.ihep.ac.cn/event/12341/</u>

- 6. Simulation of a simple detector in CEPCSW
- L Dr Tao LIN (高能所)
- O 9/17/20, 5:05 PM
- Detector simulation

Introduction (3)

Status

- For detector design for CDR: code is already included in CEPCSW.
- For 4th concept design: some code is not merged into official CEPCSW yet.

Code frequency in official CEPCSW

EcalRec-2.0.0.alpha EcalRec-2.0.1.alpha EcalRec-2.0.2.alpha EcalRec-2.0.3.alpha EcalRec-2.0.4.alpha EcalRec-2.0.5.alpha EcalRec-2.1.0.alpha EcalRec-2.1.1.alpha EcalRec-2.1.2.alpha

ECAL software

- Official: <u>https://github.com/cepc/CEPCSW</u>
- ECAL: https://github.com/qwert2333/CEPCSW
- Drift Chamber: <u>https://github.com/myliu-hub/CEPC_Track_Finding</u>
- VXD Test beam: <u>https://github.com/ihep-sft-group/CEPCSW-VXDTestbeam</u>

Introduction

Simulation framework in CEPCSW

- Gaussino-based simulation framework
- Parameterized simulation: k4SimDelphes
- Summary

Simulation framework in CEPCSW (1)

- Complete simulation chain with EDM4hep
 - Physics generator
 - MCParticle
 - Detector Simulation based on Geant4
 - MCParticle (with secondaries), SimTrackerHit, SimCalorimeterHits
 - Digitization
 - TrackerHit, CalorimeterHit

Simulation framework in CEPCSW (2)

- Geometry management with DD4hep
 - Consists of C++ constructors and XML based compact files
 - <u>https://github.com/cepc/CEPCSW</u> /tree/master/Detector

For the CRD detector models, see README by Chengdong: https://github.com/cepc/CEPCSW/tree/master/Detector/DetCRD/compact

CRD detector models - Overview

The following CRD	detector model	s are available in CEPC	SW

Model	Description	MainTracker	Ecal	Hcal	Status
CRD_o1_v01	coil inside simulation model	SIT+DC+SET	crystal	RPC	developing
CRD_o1_v02	strip SET	SIT+DC+SET	crystal	RPC	developing
CRD_o1_v03	MOST2 vertex	SIT+DC+SET	crystal	RPC	developing
CRD_o1_v04	smaller center beam pipe	SIT+DC+SET	crystal	RPC	developing

Simulation framework in CEPCSW (3)

- Non-uniform magnetic fields
 - The Br/Bz csv files are provided by magnetic group.

Simulation framework in CEPCSW (4)

- Physics generator interface
 - Physics generators with different formats are integrated, including StdHep, HepEvt, LCIO, HepMC formats.
 - Particle gun is supported.
 - Beam background generators, such as Guinea Pig.

Simulation framework in CEPCSW (5)

- Integration with Geant4 and Gaudi
 - A thin layer is developed to manage corresponding Geant4 objects.

Gaudi Components

Simulation framework in CEPCSW (6)

Integration with Fast Simulation

• Region based: when a particle enter a region, fast simulation will be triggered by Geant4.

- Support ML methods via ONNX inference interface.
 - Example: Fast pulse simulation (MLP) in drift chamber done by Wenxing

- Introduction
- Simulation framework in CEPCSW
- Gaussino-based simulation framework
- Parameterized simulation: k4SimDelphes
- Summary

Gaussino-based simulation (1)

- CEPC also works together with Key4hep project members and is re-implementing CEPC detector simulation with Gaussino
- Evolution of the simulation framework from LHCb
 - The underlying framework is moving to Gaudi Functional and Gaudi Hive
 - Better support for multi-threading, machine learning, fast simulation methods
 - Gauss-on-Gaussino is a new version of LHCb simulation framework

 Gaussino is being added to Key4hep by extracting experiment-independent parts from Gauss

Gaussino-based simulation (2)

- Gaussino is a thread-safe simulation framework based on Gaudi Functional and provides interfaces to Pythia and Geant4.
- Modular design
 - Gaudi Functional Algorithms
 - Gaudi Tools
- Four components
 - Generation of events
 - The detector simulation
 - Geometry service
 - Monitoring & output
- Easy to configure by customizing the algorithms, services and tools

Gaussino-based simulation (3)

- Generation algorithms: "Generation" and "ParticleGun"
 - The input is LHCb GenHeader
 - The output is HepMC GenEvent

class Generation

: public Gaudi::Functional::MultiTransformer< std::tuple<std::vector<HepMC3::GenEventPtr>, LHCb::GenCollisions, LHCb::GenHeader>(const LHCb::GenHeader&), Gaudi::Functional::Traits::BaseClass_t<RndAlgSeeder>>

class ParticleGun

- : public Gaudi::Functional::MultiTransformer<
 std::tuple<HepMC3::GenEventPtrs, LHCb::GenCollisions, LHCb::GenHeader>(const LHCb::GenHeader&),
 Gaudi::Functional::Traits::BaseClass_t<RndAlgSeeder>>
- The generation algorithm
 - It consists of different Gen tools
 - Thread safety of generators
- The particle gun algorithm
 - N Particles, Particle type, momentum, etc.

Gaussino-based simulation (4)

- Detector simulation algorithm: GiGaAlg
 - The input is HepMC GenEvent
 - The output is G4Event and MC truths

- GiGaMT (Service) is used by GiGaAlg to simulate events with Geant4.
 - The major interface to Geant4, including Detector Construction, Physics List and User Actions.

Gaussino-based simulation (5)

- Multithreading with Geant4
 - A queue is used to communicate between Gaussino and Geant4

Sim/GiGaMTCore/include/GiGaMTCoreRun/GiGaWorkerPilot.h

Gaussino-based simulation (6)

- Gaussino still depends on LHCb software and can not be used by other experiments directly
- Development of CEPC-on-Gaussino was planned with the following three steps
 - Using the original version having the dependency on the LHCb software
 - Creating the modified version in which the LHCb dependency is removed
 - Directly using the Key4hep version (not available at the moment)

Gaussino-based simulation (7)

- CEPC-on-Gaussino :
 - <u>https://gitlab.cern.ch/talin/build-cepc-on-gaussino</u>
 - <u>https://gitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino</u>
- Reuse GenEvent and MCEvent from the LHCb project
 - A minimum number of packages are selected
 - Non-required dependencies were removed
- Implement the simulation of CEPC vertex detector
 - Use DD4hepCnvSvc as Geometry Service.
 - Implement G4 Sensitive Detector and Hit object for tracker detector.
 - Implement a monitor tool to save output.

Gaussino-based simulation (8)

- Need to take care of the name of the sensitive detector factory.
 - DD4hep instance needs to know the name to retrieve the DD4hep detector component.

```
#include "CEPCTest/GenericTrackerSensDetTool.h"
DECLARE_COMPONENT_WITH_ID(GenericTrackerSensDetTool, "GenericTrackerSensDet")
DECLARE_COMPONENT_WITH_ID(GenericTrackerSensDetTool, "VXD")
```

- CEPC-on-Gaussino is easy to use
 - Register the sensitive detector factory and associate it with DD4hep detector name

- Introduction
- Simulation framework in CEPCSW
- Gaussino-based simulation framework
- Parameterized simulation: k4SimDelphes
- Summary

k4SimDelphes

- Delphes is also integrated into Key4hep.
 - EDM4hep is one of the supported output formats.
 - k4SimDelphes offers both standalone executables and the integration with framework.
 - https://github.com/key4hep/k4SimDelphes
 - \$ DelphesSTDHEP_EDM4HEP \
 delphes/cards/delphes_card_CEPC.tcl \
 k4SimDelphes/edm4hep_output_config.tcl \
 delphes_output_edm4hep.root \
 z_ee.hep

	_		
Current Tree : events			
>-empty-	🗽 Calorimeter Hits.position.y	🗽 EFlow Neutral Hadron.position.x	💸 EFlow Neutral Hadron direction Error .y
🕻 Calorimeter Hits	Sector Calorimeter Hits.position.z	EFlow Neutral Hadron.position.y	EFlow Neutral Hadron direction Error.z
💺 Calorimeter Hits.cellID	እ Calorimeter Hits.type	EFlow Neutral Hadron.position.z	📡 EFlow Neutral Hadron.shape Parameters_begin
Calorimeter Hits.energy	🐔 EFlow Neutral Hadron	EFlow Neutral Hadron.position Error []	EFlow Neutral Hadron.shape Parameters_end
Calorimeter Hits.energy Error	🔖 EFlow Neutral Hadron.type	🗽 EFlow Neutral Hadron.iTheta	🔖 EFlow Neutral Hadron.subdetector Energies_beg
💺 Calorimeter Hits.time	EFlow Neutral Hadron .energy	🗽 EFlow Neutral Hadron.phi	EFlow Neutral Hadron.subdetector Energies_end
Calorimeter Hits.position.x	📡 EFlow Neutral Hadron.energy Error	EFlow Neutral Hadron.direction Error.x	📡 EFlow Neutral Hadron.clusters_begin
			•

Also see Key4hep-doc:

https://key4hep.github.io/key4hep-doc/k4simdelphes/doc/starterkit/k4SimDelphes/Readme.html

- Introduction
- Simulation framework in CEPCSW
- Gaussino-based simulation framework
- Parameterized simulation: k4SimDelphes
- Summary

Summary

- CEPC simulation software is integrated with Key4hep.
 - Adopting a common software makes it easy to share between different experiments, such as k4SimDelphes could be used.
- ✤ A complete simulation chain is available in CEPCSW.
 - It is already used for detector software development.
- Currently migrating to Gaussino-based simulation.
 - Reuse both GenEvent and MCEvent from LHCb and remove the dependencies.
 - Implement the CEPC VXD detector simulation.
 - Next step:
 - Integrate with the Gaudi functional version of k4FWCore and save the output in EDM4hep.