# **Silicon Tracking at CEPC**

FU Chengdong IHEP, CAS

The 2023 international workshop on the High Energy Circular Electron-Positron Collider October 27, 2023

# Outline

### Introduction

**Tracking software** 

Application

Performance estimation for silicon tracker

•Simulation test for beam test of vertex detector

**Summary** 

### Introduction

| Physics process                                                                                                                              | Measurands                                             | Requirement on tracker                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|
| $7 \Pi 7 \to e^+e^-(v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v - v + v +$ | $-(7U)$ DD $(U \rightarrow i + i =)$                   | $\Lambda(1/m) = 2 \times 10^{-5} \oplus 0.001$                         |
| $\Sigma\Pi, \Sigma \rightarrow e^{+}e^{-}(\mu^{+}\mu^{-}), \Pi \rightarrow \mu^{+}\mu^{-}$                                                   | $III_{H}, O(Z\Pi), DR(\Pi \rightarrow \mu^{-}\mu^{-})$ | $\Delta(1/p_T) = 2 \times 10  \oplus \frac{1}{p(GeV)\sin^{3/2}\theta}$ |

- CEPC being designed as Higgs&Z factory, has basic physics requirements, such as tracking resolution.
  - Good tracker design
  - Good tracking software
- Three detector concepts were designed at CDR stage, and the 4<sup>th</sup> conceptual detector design has been proposed since 2021, continuing to be optimized.
  - The silicon detectors are designed as part of all detector concept!
- From CDR to TDR, the software platform is being switched from cepcsoft (Mokka&Marlin) to CEPCSW (DD4hep&Gaudi) step by step. The simulation and reconstruction for the silicon tracker have been completely implemented in CEPCSW.
  - Exactly as one of tracker estimation tools
  - Developing to improve the reliability
- From last workshop (validation on tracking performance of single particle and efficiency of  $b\bar{b}H$ ,  $\tau \rightarrow 3$  prong), more optimizations are ongoing to support more application, such as
  - Validation on the new endcap silicon tracker design
  - Analysis of beam test of the MOST2 vertex detector
- Test feasibility and developing... For software, performing beam test also can meet some problem on real data.



#### 3

### Tracking in CEPCSW



### Digitization

Gaussian smearing on SimTrackerHit at measurement dimension (u,v)

- pixel: 2D (u,v)
- strip: 1D (u,0) or (0, v)
- Fixed spatial resolution
  - VXD

 $\checkmark \sigma_{rphi,z}\!\!=\!\!4\mu m(2.8\mu m),\,4\mu m(6\mu m),\,4\mu m,\,4\mu m,\,4\mu m,\,4\mu m$   $\bullet$  SIT

- $\checkmark \sigma_{rphi} = 7.2 \mu m, \sigma_z = 86 \mu m$ • SOT/SET
  - $\checkmark \sigma_{\rm rphi} = 7.2 \mu {\rm m}, \sigma_{\rm z} = 86 \mu {\rm m}$
- Endcap tracker
  - $\checkmark \sigma_{rphi}$  =7.2  $\mu m, \sigma_z$ =86  $\mu m$

Parameterized spatial resolution

• Riccardo del Burgo's parametrization model

✓ σ<sub>u,v</sub> = p<sub>0</sub> + p<sub>1</sub>x + p<sub>2</sub>e<sup>-p<sub>9</sub>x</sup>cos(p<sub>3</sub>x + p<sub>4</sub>) + p<sub>5</sub>e<sup>-(x-p<sub>6</sub>)<sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub><sup>2</sup>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2p<sub>7</sub>/2</sup>





### **Tracking Chain**



### **Propose of Tracking Chain**

- Call the common API after track finding in all algorithm, and choose fitter according to option
- To choice best combination of track finding and fitting (global fit or Kalma filter?)
  - For middle tracking, low CPU time
  - For final tracking, high performance

**BEST**: appropriate performance and CPU time



# Fitter API



# Output





Currently, four TrackStates are in storage: if(location==edm4hep::TrackState::AtIP) if(location==edm4hep::TrackState::AtFirstHit) if(location==edm4hep::TrackState::AtLastHit) if(location==edm4hep::TrackState::AtCalorimeter)

### Association

#### MCRecoTrackParticleAssociation

- Track
- MCParticle
- weight: number of tracker hit linked between MCParticle and Track (NL), for a particle, found track (minimum requirement: NLmaximum≥4)



# Material Budget





cosθ

Resolution of p<sub>T</sub>



### **Resolution of d0**







# Geant4 Simulation for MOST2 Vertex

### ParticleGun

- 5GeV electron
- $\bullet$  z = 30mm &  $\theta$ =90°
- x,y & \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ to make sure
  - ✓ pass through (0,0)
  - $\checkmark$  pass through one ladder for each layer



Based on the module

implemented by **ZHENG Hao** 

## **CEPCSW Tracking for MOST2 Vertex**

- Normal silicon tracking will obtain two tracks per beam particle, two ways to resolve
  - Merge algorithm
  - Virtual additional layout
- Virtual vertex
  - 6 doubly supper layer
  - Distance between  $3^{rd}$  and  $4^{th}$  equal to double of (0,0,0) to  $1^{st}$
  - Same as beam test case
- Normal silicon tracking is possible to perform on beam test data
  - Coordinate transformation needed
- Use common fitter API, other user fitter or analysis can be called after track finding
  - Currently, the tracking software cannot work for zero magnetic field, so cheat algorithm a uniform magnetic field, such as 1T, while simulating in zero magnetic field





electron: (0,0,0)  $\theta = 90^{\circ}$  $\phi = 349^{\circ}$ 

### **Result of Kalman Filter**



### **Global Line Fit**



### Summary

After continuing upgrade, we have more practicable silicon tracking software for various kind of application, which is validated in previous work in last workshop.

### Dominant improve

- Parameterized resolution implement.
- Common fitter API and tracking algorithm modification.
- Application test
  - Performance of silicon tracker design, shown understood results.
  - Simulation of Beam test for MOST2 vertex detector, good expectation to perform on the real data.
    possible to run user analysis code through the common API

### Thanks very much for your attention!