

Progress in CEPC Drift Chamber Track Reconstruction

<u>Mengyao Liu¹</u>, Tao Lin², Weidong Li², Wenxing Fang², Xingtao Huang¹, Xueyao Zhang¹, Yuan Ye², Yao Zhang²

1.Shandong University 2.Institute of High Energy Physics

2023 CEPC workshop at Nanjing

27-October-2023

Contents

- Introduction
- Track reconstruction
- Performance of tracking
- Summary

Detector

- The CEPC experiment mainly aims to precisely measure the property of the Higgs boson.
- Physics requirements: high track efficiency (~100%), momentum resolution (<0.1%), PID (2σ p/K separation at P < ~ 20 GeV/c), etc.

- For the 4th conceptual detector, silicon detector and drift chamber (DC) are designed to provide both tracking and PID for charged particles.
- Both detector design and physics potential studies needs strong support of simulation and reconstruction software.

DC software

- The drift chamber software has been developed from scratch
- CEPCSW
 - Gaudi based framework
 - External libraries and tools
- Geometry and field map
 - DD4hep
 - Non-uniform magnetic field
- Data model
 - EDM4hep and FWCore
 - dN/dx event model
- Drift chamber
 - DC simulation
 - DC digitization
 - Track finding
 - Track fitting
 - Multi track reconstruction
- Implemented offline simulation and reconstruction software

Drift chamber simulation and reconstruction flow

Drift Chamber

- The baseline configuration of DC in CEPCSW
 - The following results with the 55-layer geometric configuration

Half length	2980 mm
Inner and outer radius	800mm to 1800 <i>mm</i>
# of Layers	100/55
Cell size	~10mmx10mm/18mmx18mm
Gas	He:iC ₄ H ₁₀ =90:10
Single cell resolution	0.11 <i>mm</i>
Sense to field wire ratio	1:3
Total # of sense wire	81631/24931
Stereo angle	1.64~3.64 <i>deg</i>
Sense wire	Gold plated Tungsten ϕ =0.02mm
Field wire	Silver plated Aluminum ϕ =0.04 <i>mm</i>
Walls	Carbon fiber 0.2 <i>mm</i> (inner) and 2.8 <i>mm</i> (outer)

DC Simulation

Following the common scheme for detector description

- XML based compact files for drift chamber detector description
- CRD: Detector/DetCRD/compact/CRD_oX_vYY/CRD_o1_vYY.xml
- Geometry parameters can be flexibly configured

<constant name="DC_layer_number" value="55"/>
<constant name="DC_cell_width" value="18*mm"/>
<constant name="Alpha" value="12*deg"/>

- Cell partitioning with segmentation
 - Consistent between simulation, reconstruction, and analysis
- Simple digitization
 - Constant drift velocity: V_{drift} =40µm/ns & fixed spatial resolution: σ =110µm

Mixing Background

- To simulate the real detector condition
- Noise level:
 - uniform, random
 - can be configured flexibly
- Signal & Noise TDC
 - Noise time window: 0~2000ns

The position of the noise hit (blue) with a noise level of 20% and signal hit (red) on the XY plane

Introduction

- Track reconstruction
 - Track finding
 - Track fitting
- Performance of tracking
- Summary

Track Finding

- Tracking strategies:
 - Track seed:
 - Reconstructed track of the silicon tracker
 - CKF(Combinatorial Kalman Filter):
 - Migrated from Bellell
 - Geometry
 - Field
 - Data IO
 - Finding most of the DC hits at the same track
 - One hit can be found in each layer

Basic procedure behind the CKF

Workflow of track reconstruction

Track Finding

A- befor salvage hits

after salvage hits

p (GeV/c)

50¹

Track Fitting

- GenFit: https://github.com/GenFit/GenFit/
 - Experiment-independent generic modular framework for track-fitting
 - Official track fitting for Bellell, also used by PANDA, COMET, GEM-TPC etc.
 - Kalman Filter, *Deterministic Annealing Filter*, and General Broken Lines fitter, etc.
- Integration:
 - Genfitter: the core of track fitting algorithm
 - GenfitField, GenfitMaterialInterface
 - GenfitHit, GenfitTrack

- Introduction
- Track reconstruction
- Performance of tracking
- Summary

Quality of track fitting

- Data Sample: Single μ^- , $|cos\theta| \in [0,0.766]$, $p_T = 10 GeV/c$ with single cell resolution of $110 \mu m$
- Spatial resolution smaller than 110μm because use the fitting of including the current hit

Normalized parameter residual distributions

The estimation of the track parameter and error is reliable

Tracking Efficiency

- Data sample: Single particle, $|cos\theta| \in [0,0.766]$
- Track Efficiency = N_1/N_2
 - N₁ is the number of track satisfying:
 - $\chi^2 < 400$
 - N_{DC signal hits on track} > 6
 - N₂ is the numbre of silicon track
- >99.8% tracking efficiency for single particle
- Track efficiency is closely to 99.8% for single μ^- both without noise and with a noise level of 20%

14

Momentum Resolution

- Data Sample: Single particle μ^- , $\theta = 85^\circ$
- Combined measurement of Silicon and Drift Chamber
- Momentum resolution is reasonable and consistent with ILD tracking

Impact Parameter

- Data Sample: Single particle μ^- , $\theta = 85^\circ$
- Impact parameter
 - $\sigma_{d0} = 3.41 \mu m$ with $p_T = 10 GeV/c$
 - Consistent with fast simulation

Physics Event Reconstruction

- ♦ Higgs reconstruction for $H \rightarrow \mu^+ \mu^-$
- Can be used for physics simulation studies

Summary

- Developed independently a seed-based DC tracking algorithm starting from scratch
- Tracking is preliminarily implemented with noise at CEPC
- Promising tracking performance is achieved
 - >99.8% track efficiency for single particle
 - Tracking exhibits good robustness
 - Implementing the physics event reconstruction and get reasonable result

