Top and bottom quark A_{FB} at NNLO QCD in (un)polarized electron positron collisions

Peng-Cheng Lu (Shandong University)

In collaboration with Werner Bernreuther, Long Chen, Zong-Guo Si Based on: JHEP 12 (2016) 098 JHEP 01 (2017) 053 JHEP 05 (2023) 094

> 24 October 2023 CEPC International Workshop

Outline

Motivation and Background

Asymmetries for bottom quarks

- > e^+e^- collider offer clean experimental conditions for studying properties of heavy quark, e.g. masses, width, and electroweak couplings
- > A^Q_{FB} can extract the form factor of the electroweak neutral current coupling

• $b\overline{b}$ pair production at Z-pole:

2.9 σ deviations between the direct measured and its SM fit[SLD Group et al. 06]. The massive α_s^2 corrections to the b-quark diminish to 2.6 σ [Chen et al. 17]. Massive+PMC, 2.1 σ [Wang et al. 20]

- ✤ The measurement accuracy of A_{FB}^b and A_{FB}^t can reach per mille level at future e^+e^- collider. [Abramovicz et al. 03]
- e⁺e⁻ collider offer polarized electron and positron beams
 enhances the sensitivity of the detector to electroweak parameters

Motivation and Background

Concerning high order corrections:

NLO QCD[Jersak et al. 82; Arbuzov et al. 92; Djouadi et al. 95 etc], NLO EW[Beenakker et al. 91; Bohm et al. 89; Bardin et al. 01 etc], Part of NNLO QCD[Gorishnii et al, 86; Chetyrkin et al. 96 etc] Massless quark: Full NNLO QCD[Altarelli, Lampe 93; Ravindran, Neerven 98; Catani, Seymour 99, Weinzierl 07] $e^+e^- \rightarrow t\bar{t}$ @ NNLO QCD [Gao, Zhu, PRL (2014); Chen et a.(16)] $e^+e^- \rightarrow t\bar{t}$ near – threshold @ NNNLO QCD [M.Beneke et al., PRL (2015)] $e^+e^- \rightarrow t\bar{t}$ @ NNNLO QCD [Chen et al. 2022]

Our aim was to investigate the effect of beam polarization on A_{FB}^Q for $e^+e^- \rightarrow Q\overline{Q} + X$ at α_s^2 , and compare with these results for an unpolarized results. For Q = t, in the continuum above the $t\overline{t}$ threshold, for Q = b, at the Z pole.

Definition of A_{FB} and Benchmark Polarizations

 \succ The polarized A_{FB}:

$$A_{FB} \equiv \frac{N_F - N_B}{N_F + N_B} = \frac{\sigma(\cos\theta_t > 0) - \sigma(\cos\theta_t < 0)}{\sigma(\cos\theta_t > 0) + \sigma(\cos\theta_t < 0)} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{\sigma_A}{\sigma_S}$$

 $\theta_t = \angle(e^-, t)$ scattering angle between t and e^-

Four benchmark polarization configurations

e_L^-	e_R^+	P_v	P_a
-80%	+30%	0.76	-0.5
+80%	-30%	0.76	0.5
+80%	+30%	1.24	1.1
-80%	-30%	1.24	-1.1

$$P_{v} = 1 + e_{L}^{-}e_{R}^{+},$$

$$P_{a} = e_{L}^{-} + e_{R}^{+}$$
For unpolarized beams:
$$P_{v}=1, P_{a}=0$$

Results: Asymmetries for top quark

> The expanded A_{FB} : $e^+e^- \rightarrow t\bar{t} + X @ NNLO QCD$

$$A_{FB}^{NLO} = A_{FB}^{LO} [1 + A_1],$$
$$A_{FB}^{NNLO} = A_{FB}^{LO} [1 + A_1 + A_2]$$

 $\sqrt{s} = 500 \text{ GeV}$

JHEP 05 (2023) 094

Beam polarization LO		NLO		NNLO			
	(e_L^-,e_R^+)	$\sigma_S \; [{ m pb}]$	$A_{ m FB}^{ m LO}$	$\sigma_S \; [{ m pb}]$	$A_1 \ [10^{-2}]$	$\sigma_S \; [{ m pb}]$	$A_2 \ [10^{-2}]$
	(0, 0)	0.55084	0.4169	$0.62006^{-0.00489}_{+0.00571}$	$2.26\substack{+0.186\-0.159}$	$0.63038^{-0.00187}_{+0.00147}$	$1.16\substack{+0.004\\-0.014}$
	(-80%, +30%)	0.30850	0.4458	$0.34762^{-0.00276}_{+0.00323}$	$2.14\substack{+0.177 \\ -0.151}$	$0.35362^{-0.00108}_{+0.00086}$	$1.10\substack{+0.003\\-0.013}$
	(+80%,-30%)	0.52877	0.4001	$0.59488^{-0.00467}_{+0.00545}$	$2.32\substack{+0.192 \\ -0.164}$	$0.60456\substack{+0.00176\\+0.00138}$	$1.20\substack{+0.004\\-0.015}$
	(+80%, +30%)	0.92534	0.3957	$1.04086^{-0.00816}_{+0.00953}$	$2.34\substack{+0.193 \\ -0.165}$	$1.05771^{-0.00307}_{+0.00239}$	$1.21\substack{+0.004\\-0.015}$
	(-80%,-30%)	0.44074	0.4614	$0.49689\substack{+0.00397\\+0.00463}$	$2.08\substack{+0.172 \\ -0.147}$	$0.50564^{-0.00157}_{+0.00126}$	$1.07\substack{+0.003 \\ -0.012}$

 σ_S : symmetric cross section

Results: Asymmetries for top quark

$$A_{FB}^{NLO} = A_{FB}^{LO} [1 + A_1], A_{FB}^{NNLO} = A_{FB}^{LO} [1 + A_1 + A_2]$$

$\sqrt{s} = 500 \text{ GeV}$

Beam polarization	LO		NLO		NNLO	
(e_L^-,e_R^+)	$\sigma_S \; [\mathrm{pb}]$	$A_{ m FB}^{ m LO}$	$\sigma_S \; [{ m pb}]$	$A_1 \ [10^{-2}]$	$\sigma_S \; [{ m pb}]$	$A_2 [10^{-2}]$
(0, 0)	0.55084	0.4169	$0.62006^{-0.00489}_{+0.00571}$	$2.26\substack{+0.186 \\ -0.159}$	$0.63038^{-0.00187}_{+0.00147}$	$1.16\substack{+0.004\\-0.014}$
(-80%,+30%)	0.30850	0.4458	$0.34762^{-0.00276}_{+0.00323}$	$2.14\substack{+0.177 \\ -0.151}$	$0.35362^{-0.00108}_{+0.00086}$	$1.10\substack{+0.003\\-0.013}$
(+80%,-30%)	0.52877	0.4001	$0.59488^{-0.00467}_{\pm 0.00545}$	$2.32\substack{+0.192\\-0.164}$	$0.60456^{-0.00176}_{\pm 0.00138}$	$1.20\substack{+0.004\\-0.015}$
(+80%, +30%)	0.92534	0.3957	$1.04086^{-0.00816}_{\pm 0.00953}$	$2.34\substack{+0.193 \\ -0.165}$	$1.05771^{-0.00307}_{\pm 0.00239}$	$1.21\substack{+0.004\\-0.015}$
(-80%,-30%)	0.44074	0.4614	$0.49689^{-0.00397}_{+0.00463}$	$2.08\substack{+0.172 \\ -0.147}$	$0.50564^{-0.00157}_{+0.00126}$	$1.07\substack{+0.003\\-0.012}$

• The maximal spread R_i^{max} of A_i (i = 1,2) are 12.3% and 13.3%.

$$R_i^{\max} = \frac{(\max[A_i(e_L^-, e_R^+)] - \min[A_i(e_L^-, e_R^+)])}{A_i(0, 0)}$$

• The effect of the beam polarization on A_1 , $A_2(2.8 \text{ per mille}, 1.3 \text{ per mille})$ are comparable to e^+e^- collider statistical uncertainty (5 per mille).

Results: Asymmetries for top quark

$\sqrt{s} = 380 \text{ GeV}$

Beam polarization	LO		NLO		NNLO	
(e_L^-,e_R^+)	$\sigma_S \; [{ m pb}]$	$A_{ m FB}^{ m LO}$	$\sigma_S \; [{ m pb}]$	$A_1 [10^{-2}]$	$\sigma_S \; [{ m pb}]$	$A_2 \ [10^{-2}]$
(0, 0)	0.58477	0.2342	$0.78874^{-0.01484}_{+0.01741}$	$3.67\substack{+0.313 \\ -0.267}$	$0.85037^{-0.01009}_{+0.01002}$	$2.92\substack{+0.188 \\ -0.168}$
(-80%, +30%)	0.32039	0.2549	$0.43232\substack{+0.00814\\+0.00955}$	$3.62\substack{+0.309 \\ -0.263}$	$0.46633^{-0.00556}_{+0.00553}$	$2.86\substack{+0.183 \\ -0.163}$
(+80%,-30%)	0.56846	0.2226	$0.76657^{-0.01441}_{+0.01691}$	$3.70\substack{+0.316 \\ -0.270}$	$0.82623\substack{+0.00977\\+0.00970}$	$2.95\substack{+0.191 \\ -0.170}$
(+80%, +30%)	0.99800	0.2196	$1.34571\substack{+0.02530\\+0.02968}$	$3.71\substack{+0.317 \\ -0.270}$	$1.45035^{-0.01714}_{+0.01701}$	$2.96\substack{+0.192 \\ -0.171}$
(-80%,-30%)	0.45224	0.2664	$0.61037^{-0.01151}_{+0.01350}$	$3.59\substack{+0.306 \\ -0.261}$	$0.65856^{-0.00788}_{+0.00784}$	$2.82\substack{+0.180 \\ -0.160}$

JHEP 05 (2023) 094

$\sqrt{s} = 700 \text{ GeV}$

Beam polarization	LO		NLO		NNLO		
(e_L^-,e_R^+)	$\sigma_S ~[{ m pb}]$	$A_{ m FB}^{ m LO}$	$\sigma_S \; [{ m pb}]$	$A_1 \ [10^{-2}]$	$\sigma_S \; [{ m pb}]$	$A_2 [10^{-3}]$	
(0, 0)	0.32344	0.5144	$0.34560^{-0.00151}_{+0.00176}$	$0.90\substack{+0.071 \\ -0.061}$	$0.34759^{-0.00040}_{+0.00024}$	$4.6\substack{+0.009 \\ -0.048}$	
(-80%,+30%)	0.18367	0.5440	$0.19644^{-0.00087}_{+0.00101}$	$0.79\substack{+0.063\\-0.054}$	$0.19766^{-0.00024}_{+0.00015}$	$4.2^{+0.027}_{-0.058}$	
(+80%,-30%)	0.30796	0.4968	$0.32887^{-0.00143}_{+0.00166}$	$0.96\substack{+0.076\\-0.065}$	$0.33068\substack{+0.00037\\+0.00021}$	$4.8^{-0.001}_{-0.043}$	
(+80%,+30%)	0.53779	0.4922	$0.57422\substack{+0.00249\\+0.00289}$	$0.97\substack{+0.077\\-0.066}$	$0.57734\substack{+0.00064\\+0.00037}$	$4.9\substack{-0.004\\-0.041}$	
(-80%,-30%)	0.26435	0.5597	$0.28288^{-0.00126}_{+0.00147}$	$0.74\substack{+0.059\\-0.050}$	$0.28469^{-0.00035}_{+0.00022}$	$4.0\substack{+0.037\\-0.063}$	

The **unexpanded** A_{FB}:

$$A_{FB}(\alpha_s) = A_{FB}^{LO} C_1, A_{FB}(\alpha_s^2) = A_{FB}^{LO} C_2, (A_{FB}^{LO} = \frac{\sigma_A^0}{\sigma_S^0})$$

Beam j	polarization	(0, 0)	$(-80\% \pm 30\%)$	$(\pm 80\% - 30\%)$	$(\pm 80\% \pm 30\%)$	(-80% - 30%)
(<i>e</i>	(e_L^-,e_R^+)	(0, 0)	$(-3070, \pm 3070)$	(+3070, -3070)	(+3070,+3070)	(-3070, -3070)
380 CoV	$C_1 - 1 [10^{-2}]$	$2.72\substack{+0.170 \\ -0.149}$	$2.68\substack{+0.169 \\ -0.148}$	$2.75\substack{+0.168 \\ -0.152}$	$2.75\substack{+0.169 \\ -0.152}$	$2.66\substack{+0.161\\-0.145}$
300 Gev	$C_2 - 1 \ [10^{-2}]$	$5.41\substack{+0.435 \\ -0.360}$	$5.32\substack{+0.429 \\ -0.355}$	$5.47\substack{+0.437 \\ -0.367}$	$5.48\substack{+0.440 \\ -0.368}$	$5.26\substack{+0.418 \\ -0.352}$
400 CoV	$C_1 - 1 \ [10^{-2}]$	$2.69\substack{+0.180 \\ -0.155}$	$2.63\substack{+0.177 \\ -0.149}$	$2.72^{+0.179}_{-0.160}$	$2.73\substack{+0.180 \\ -0.158}$	$2.59\substack{+0.174 \\ -0.151}$
400 Gev	$C_2 - 1 \ [10^{-2}]$	$4.96\substack{+0.374 \\ -0.316}$	$4.84\substack{+0.364\\-0.305}$	$5.03\substack{+0.379 \\ -0.323}$	$5.05\substack{+0.381 \\ -0.322}$	$4.77\substack{+0.356 \\ -0.304}$
500 CoV	$C_1 - 1 \ [10^{-2}]$	$2.01\substack{+0.146 \\ -0.129}$	$1.90\substack{+0.136 \\ -0.121}$	$2.06\substack{+0.152 \\ -0.133}$	$2.08\substack{+0.152 \\ -0.133}$	$1.85\substack{+0.136 \\ -0.116}$
500 Gev	$C_2 - 1 \ [10^{-2}]$	$3.23\substack{+0.200 \\ -0.178}$	$3.07\substack{+0.193 \\ -0.168}$	$3.33\substack{+0.206\\-0.183}$	$3.36\substack{+0.208 \\ -0.183}$	$2.98\substack{+0.184\\-0.161}$
700 CoV	$C_1 - 1 \ [10^{-2}]$	$0.84\substack{+0.060\\-0.055}$	$0.74\substack{+0.053\\-0.050}$	$0.90\substack{+0.066\\-0.057}$	$0.91\substack{+0.065\\-0.058}$	$0.69\substack{+0.051\\-0.044}$
100 Gev	$C_2 - 1 [10^{-2}]$	$1.32\substack{+0.075\\-0.068}$	$1.17\substack{+0.072\\-0.063}$	$1.40\substack{+0.082\\-0.069}$	$1.42\substack{+0.079\\-0.071}$	$1.10\substack{+0.066\\-0.058}$

JHEP 05 (2023) 094

The numbers in superscript (subscript) refer to the changes if renormalization scale μ is set to $2\sqrt{s}$ ($\sqrt{s}/2$) compared to the central value at $\mu = \sqrt{s}$.

The dependence for Flavor non-singlet need:

The coherent contribution of the Z and γ exchange The final-state quark is massive

✓ $t\bar{t}$ production is completely dominated by the flavor non-singlet corrections

> Flavor singlet contributions are small($\sim 10^{-4}$ to A_{FB}^{LO})

For the thrust axis

Beam polarization	LO		I	NLO	NNLO	
e_L^-,e_R^+	$\sigma_S \; [{ m pb}]$	$A_{ m FB}^{ m LO}$	$\sigma_S \; [{ m pb}]$	$A_1 \ [10^{-2}]$	$\sigma_S \; [{ m pb}]$	$A_2 \ [10^{-2}]$
(0, 0)	8747.4	0.1512	9122.8	$-2.88\substack{+0.273\\-0.338}$	9164.8	$-1.11^{+0.085}_{-0.037}$
(-80%,+30%)	5710.7	-0.3644	5955.8	$-2.88\substack{+0.273\\-0.338}$	5990.6	$-1.19\substack{+0.064\\-0.022}$
(+80%,-30%)	7585.3	0.5394	7910.9	$-2.88\substack{+0.273\\-0.338}$	7939.9	$-0.99\substack{+0.115\\-0.058}$
(+80%,+30%)	12908.8	0.6531	13462.8	$-2.88\substack{+0.273\\-0.338}$	13508.5	$-0.96^{+0.122}_{-0.064}$
(-80%,-30%)	8784.7	-0.5862	9161.7	$-2.88\substack{+0.273\\-0.338}$	9220.1	$-1.25\substack{+0.049\\-0.338}$

JHEP 05 (2023) 094

- A_1 is independent of the beam polarization
- Non-singlet corrections A_2^{ns} amounts to about 65% of the total A_2
- The maximal spread R_2^{max} of A_2 is 27% arise from the flavor singlet contributions

(3 per mille)

Results: Asymmetries for b quark at the Z peak

$$y_{ij}^{X} = (1 - \cos\theta_{ij}) \frac{2r_{X}}{s} \qquad r_{F} = \begin{cases} \max(E_{i}^{2}, E_{j}^{2}), & \text{If softer of i, j is flavored} \\ \min(E_{i}^{2}, E_{j}^{2}), & \text{If softer of i, j is flavorless} \end{cases}$$
$$r_{D} = \min(E_{i}^{2}, E_{j}^{2})$$

For the b-jet axis

Jet algorithms	LO		-	NLO	NNLO	
(y_{cut})	$\sigma_S \; [{ m pb}]$	$A_{ m FB}^{ m LO}$	$\sigma_S \; [{ m pb}]$	$A_1 \ [10^{-2}]$	$\sigma_S \; [\mathrm{pb}]$	$A_2 \ [10^{-2}]$
Flavor k_T , 0.01	8747.4	0.1512	9120.7	$-2.88\substack{+0.037\\+0.021}$	9150.4	$-1.09\substack{+0.216 \\ -0.303}$
Flavor k_T , 0.05	8747.4	0.1512	9111.4	$-2.67\substack{+0.034\\+0.020}$	9121.4	$-0.83\substack{+0.167 \\ -0.236}$
Flavor k_T , 0.10	8747.4	0.1512	9098.2	$-2.42^{+0.031}_{+0.018}$	9097.7	$-0.68^{+0.138}_{-0.195}$
Flavor k_T , 0.15	8747.4	0.1512	9082.8	$-2.18\substack{+0.028\\+0.016}$	9075.3	$-0.59\substack{+0.120 \\ -0.169}$
Durham, 0.01	8747.4	0.1512	9100.2	$-2.58\substack{+0.033\\+0.019}$	9112.1	$-0.87\substack{+0.174 \\ -0.244}$
Durham, 0.05	8747.4	0.1512	9050.4	$-1.84^{+0.024}_{+0.013}$	9035.8	$-0.52^{+0.105}_{-0.147}$
Durham, 0.10	8747.4	0.1512	9018.2	$-1.46\substack{+0.019\\+0.011}$	8992.4	$-0.38\substack{+0.076\\-0.107}$
Durham, 0.15	8747.4	0.1512	8996.7	$-1.26\substack{+0.016\\+0.009}$	8964.4	$-0.33\substack{+0.065\\-0.091}$

Unpolarized beams, and excluding b-flavor number zero events

The QCD correction terms A_1^{2j} and A_2^{2j} for the two-jet A_{FB} :

JHEP 05 (2023) 094

		Flavor k_T		Durham			
$y_{ m cut}$	$\sigma_S \; [{ m pb}]$	$A_1^{2j} [10^{-2}]$	$A_2^{2j} [10^{-2}]$	$\sigma_S \; [{ m pb}]$	$A_1^{2j} [10^{-2}]$	$A_2^{2j} [10^{-2}]$	
0.01	5781.3	$-0.151^{+0.002}_{+0.001}$	$0.029\substack{+0.017\\-0.011}$	5984.9	$-0.168^{+0.002}_{+0.001}$	$0.032\substack{+0.018\\-0.012}$	
0.05	7666.2	$-0.390\substack{+0.005\\+0.003}$	$-0.015\substack{+0.005\\-0.002}$	8011.6	$-0.467\substack{+0.006\\+0.003}$	$-0.090\substack{+0.012\\-0.016}$	
0.10	8231.5	$-0.571\substack{+0.007\\+0.004}$	$-0.061\substack{+0.008\\-0.010}$	8548.1	$-0.696\substack{+0.009\\+0.005}$	$-0.160\substack{+0.028\\-0.038}$	
0.15	8491.6	$-0.705\substack{+0.009\\+0.005}$	$-0.109\substack{+0.018\\-0.025}$	8754.7	$-0.851\substack{+0.011\\+0.006}$	$-0.222\substack{+0.041\\-0.057}$	

 \times QCD corrections to A_1^{2j} and A_2^{2j} are small

X Not monotonic due to flavor singlet contributions

• A complete fully differential NNLO QCD calculation of massive $Q\bar{Q}$ productions at order α_s^2 in **polarized** e^+e^- collisions was done.

• Application to A_{FB} for top quark in the continuum to order α_s^2

- \checkmark Beam polarizations change A_{FB}^t by the order of few per mille
- ✓ Predictions for the $\cos\theta_t$ distributions at order α_s^2

• Application to A_{FB} for to bottom at Z pole to order α_s^2

- ✓ Only NNLO QCD are effected by beam polarization (per mille level)
- Explore inclusive b-jet asymmetry and two-jet asymmetry
- ✓ The two-jet asymmetry is a precision observable

• A complete fully differential NNLO QCD calculation of massive $Q\bar{Q}$ productions at order α_s^2 in **polarized** e^+e^- collisions was done.

• Application to A_{FB} for top quark in the continuum to order α_s^2

- \checkmark Beam polarizations change A_{FB}^t by the order of few per mille
- ✓ Predictions for the $\cos\theta_t$ distributions at order α_s^2

• Application to A_{FB} for to bottom at Z pole to order α_s^2

- ✓ Only NNLO QCD are effected by beam polarization (per mille level)
- Explore inclusive b-jet asymmetry and two-jet asymmetry
- ✓ The two-jet asymmetry is a precision observable

Appendix

 $\succ \theta_t = \angle (e^-, t)$ scattering angle between t and e^-

$$T = \max_{oldsymbol{n}_T} rac{\sum\limits_{i=1}^n |oldsymbol{k}_i \cdot oldsymbol{n}_T|}{\sum\limits_{i=1}^n |oldsymbol{k}_i|}, \qquad |oldsymbol{n}_T| = 1.$$

The orientation of the thrust axis is fixed by requiring $\boldsymbol{n}_T \cdot \boldsymbol{k}_1 > 0$.