Theoretical Progress on Energy Correlators Hua Xing Zhu **Peking University**

CEPC Workshop 2023 October 24, 2023, Nanjing

Reformulating QCD measurements using energy correlators

Electron-Positron Scattering

Proton-Proton Scattering

Electron-Proton (Ion) Scattering

The energy flow operator measures the energy deposition on a detector at direction \vec{n}

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ \vec{n}_i T^{0i}(t, r\vec{n})$$
$$\mathcal{E}(\vec{n}) |p\rangle = p^0 \delta^{(2)}(\hat{p} - \hat{n}) |p\rangle$$
$$\mathcal{E}(\vec{n}) = \int_{-\infty}^\infty d(n \cdot x) \lim_{\bar{n} \cdot x \to \infty} (\bar{n} \cdot x)^2 \bar{n}^\mu \bar{n}^\nu T_{\mu\nu}(x)$$

The energy flow operator (ANEC) also found important application in black hole physics and quantum information!

Energy flow operator

General lightray operator

CFT picture receives controllable logarithmic corrections in QCD

·0

Hofman, Maldacena 08; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 19

$$\lim_{x \to \infty} (\bar{n} \cdot x)^{\Delta - J} \bar{n}_{\mu_1} \cdots \bar{n}_{\mu_J} O_{\Delta, J}^{\mu_1 \cdots \mu_J}(x)$$

local twist operator of dimension Δ and spin J

determined by bulk dimension

At twist 2 the relevant unpolarized operators are

$$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi$$
$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\mu+}$$

$$\mathcal{O}^{[J]}_{\tilde{g}(\lambda)} = -\frac{1}{2^J} F^{\mu+}_a (iD^+)^{J-2} F^{\nu+}_a \epsilon_{\lambda,\mu}$$
 helicity \pm

Dixon, Moult, HXZ, 2019

Visualizing quark/gluon hadronization (real-time confinement)

Komiske, Moult, Thaler, HXZ, 2022

https://cds.cern.ch/record/2866560, 2023

See Prof. Meng Xiao's talk

Understanding the picture

Komiske, Moult, Thaler, HXZ, 2022

scaling law Large R_L (perturbative region) $\lim_{\hat{n}_2 \to \hat{n}_1} \mathcal{E}(\hat{n}_1) \mathcal{E}(\hat{n}_2) = \sum c_i \theta^{\tau_i - 4} \mathbb{O}_i(\hat{n}_1) + \text{running coupling}$

very small R_L (free hadrons)

Starting from any given point, the number of points correlated with it grow linearly with radius R

Strong coupling from projected EECs

https://cds.cern.ch/record/2866560, 2023 See Prof. Meng Xiao's talk

Theory predictions: W. Chen, J. Gao, Y.B. Li, Z. Xu, X.Y. Zhang, HXZ, 2023

CERN Courier @CERNCourier · Aug 22

Florencia Canelli showed an overview of brand-new results from the @CMSExperiment, such as an updated value of the strong coupling constant

Spin interference from energy correlators

One-loop perturbation theory calculation:

$$Sq_q^{(0)}(\phi) = C_F n_f T_F \left(\frac{39 - 20\cos(2\phi)}{225}\right) + C_F C_A \left(\frac{273 + 10\cos(2\phi)}{225}\right)$$
$$Sq_g^{(0)}(\phi) = C_A n_f T_F \left(\frac{126 - 20\cos(2\phi)}{225}\right) + C_A^2 \left(\frac{882 + 10\cos(2\phi)}{225}\right)$$

H. Chen, M.X. Luo, Moult, T.Z. Yang, X.Y. Zhang, HXZ, 2019

H. Chen, Moult, HXZ, 2021

Karlberg, Salam, Scyboz, Verheyen, 2022

Slide adapted from J. Thaler, Snowmass, July, 2022

Energy correlators for jets at the EIC/EICC

ep and nucleon structure

B0 Sensors (4 layers, ev

Structure function
measurement: PDFs(x)

- SIDIS:
 - TMD
 - spin

	Acceptance
neter (ZDC)	$oldsymbol{ heta}$ < 5.5 mrad (η > 6)
ations)	0.0* < θ < 5.0 mrad (η > 6)
ctors (OMD)	$0.0 < \theta < 5.0 \text{ mrad} (\eta > 6)$
venly spaced)	5.5 < θ < 20.0 mrad (4.6 < η < 5.9)

• How can we utilize the forward information and what does it probes?

The Nucleon Energy Correlator

14

X.H. Liu, HXZ, 2022

Probing gluon saturation

H.Y. Liu, X.H. Liu, J.C. Pan, F. Yuan, HXZ, 2023

Track energy correlators at the CEPC/FCC-ee

BTC : Booster to Collider Ring

Understanding hadronization with high precision data

谢去病 Hadronization 山东大学

- 高能踫撞必先产生各种夸克。
- 夸克如何强子化成各种各样的强子? •
- 强子化过程不仅出现于任何高能反应, • 而且是与夸克禁闭、QCD真空结构等 列重大理论问题直接相关的非微扰QCD过 -其研究是当代物理中一个 程。 基本又艰巨课题

As an example, evolution of charge quantum number can be probed by track EEC with precision

QCD conserves baryon number, strangeness, and momentum

→ Particle Correlations

E.g., **how far** from a baryon (or a strange particle) do you have to go before you find an anti-baryon (anti-strange)?

Must be able to tell which hadrons are which (strangeness, baryon number, spin) > PID

Relative **momentum kicks** of order Λ_{OCD} ~ 100 MeV must be well resolved

credit: Peter Skands

Track EEC

problem of pile up at the LHC

Chang, Procura, Thaler, Waalewijn, 201

Projected energy correlators on track

Y.B. Li, Jaarsma, Moult, Waalewijn, HXZ, 2023

H. Chen, Y.B. Li, Jaarsma, Moult, Waalewijn, HXZ, 2022

- Ratio of charged v.s. all-hadron calculable for projected EECs
- Non-vanishing slope visible starting from three points: signal of multiple-particle correlation in the fragmentation process

Positive and negative charge energy correlator

- Beyond track, sign of particle charge can also make a difference
- Enhanced small angle correlation between opposite charge particles

Lee, Moult, 2023

ence ion

Summary

- collider physics
- Remarkably rich QCD dynamics can be probed by EECs
 - Scaling behavior in jet evolution and real time hadronization
 - Spinning gluon effects in jet substructure
 - Non-Gaussianity at the LHC
 - Scaling in DIS through nucleon EEC
 - Probing Gluon saturation

Resurgence of interests in EEC and its generalization inspired by conformal

Global quantum number in parton fragmentation from EECs: track EEC