https://arxiv.org/abs/2310.03440

https://arxiv.org/abs/2309.13231

Jet origin identification using ParticleNet

Yongfeng Zhu, Hao Liang, Huilin Qu, Cen Zhou, Manqi RUAN, etc

CEPC WS@NJU

- Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)
 - Jet Flavor Tagging + Jet Charge measurements + s-tagging + gluon tagging...
- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration: CEPC-v4 detector, reconstructed with Arbor.

CEPC WS@NJU

Particle Net: IO

Table 3. The input variables used in ParticleNet for jet flavor tagging at the CEPC.

- Input: reco particles corresponding to 1 jet...
- Output: likelihoods to 11 different categories (sum =1)
 ^{23/10/2023}
 CEPC WS@NJU

Jet origin id: 11 categories

- vvH sample, with Higgs decays into different species of colored particle: 5 quark, 5 antiquark & gluon
 - 1 Million of each type
 - 60/20/20% for training, validating, and testing, result corresponding to testing sample
- Pid: ideal Pid three scenarios
 - Lepton identification
 - + Charged hadron identification —
 - + Neutral Kaons identification
- Patterns:

23/10/2023

- ~ Diagonal at quark sector...
- $P(g \rightarrow q) < P(q \rightarrow g)...$
- Light jet id...

		b b c c s s u u d d G Prediction										
	_		÷	-	+	-	-	-	- <u>+</u>	4	<u>+</u>	
	G -	0.014	0.014	0.027	0.027	0.050	0.051	0.044	0.042	0.036	0.035	0.661
	d -	0.002	0.003	0.023	0.013	0.088	0.099	0.222	0.079	0.086	0.272	0.112
	d -	0.003	0.002	0.015	0.022	0.096	0.087	0.086	0.210	0.288	0.077	0.115
	u -	0.003	0.002	0.014	0.022	0.122	0.041	0.064	0.356	0.183	0.079	0.113
	u -	0.002	0.003	0.023	0.012	0.041	0.123	0.373	0.057	0.088	0.166	0.111
Truth	5-	0.002	0.003	0.021	0.025	0.097	0.547	0.079	0.026	0.048	0.060	0.091
	s -	0.003	0.002	0.026	0.021	0.543	0.096	0.030	0.077	0.063	0.046	0.093
	. -	0.016	0.018	0.056	0.734	0.030	0.037	0.010	0.024	0.018	0.009	0.047
	с-	0.018	0.015	0.732	0.060	0.038	0.030	0.025	0.009	0.010	0.017	0.046
	b-	0.172	0.739	0.022	0.032	0.003	0.004	0.003	0.002	0.002	0.002	0.018
	b -	0.742	0.170	0.033	0.022	0.004	0.003	0.002	0.003	0.002	0.002	0.017

4

Jet origin id: 11 categories

Eff = (0.74 + 0.17 + 0.74 + 0.17)/2 = 0.91Charge flip rate = 0.17/0.91 = 0.19

Performance with different PID scenarios

Lepton: isolated & Inside jet

Charged Hadron ID: inside jet...

m - 1 - 1 - 0

able 5		
The K^{\pm} identification performance with different	t factors, σ_a	$\sigma_{ual} = factor \cdot \sigma_{intrinsic},$
with/without combination of TOF information at	he Z-pole.	

with/ without com	billation of 101 li	ioimation at	ne z pole.		
	Factor	1.	1.2	1.5	2.
dE/dx	ε _K (%) purity _K (%)	95.97 81.56	94.09 78.17	91.19 71.85	87.09 61.28
dE/dx & TOF	ε _K (%) purity _K (%)	98.43 97.89	97.41 96.31	95.52 93.25	92.3 87.33

- Pid via dEdx or dNdx: < 3% in barrel region for GeV hadron
- Pid at Drift Chamber using dN/dx: even better performance

Kshort & Lambda

Fig. 7 All reconstructed mass distributions of K_{S}^{0} and Λ . They are fitted with double-sided crystal ball functions

Table 3	K_{S}^{0}	and	Λ	reconstruction	performance
---------	-------------	-----	---	----------------	-------------

70.1
27.3
86.4%
0.606
0.236

High eff/purity reco. of charged Final states at least...

0

0.5

-0.5

-1

1 α

Impact on benchmark: vvH, $H \rightarrow jets$

	vvHqą̄/gg	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95E7	9.07E6	5.08E7	6.39E6	2.18E7	961606	16.86
recoilMass (GeV) $\in (74, 131)$	157822	5.11E7	2.17E6	1.38E6	4.78E6	1.30E6	1.08E6	74991	4.99
<i>visEn</i> (GeV) ∈ (109, 143)	142918	2.37E7	1.35E6	8.81 <i>E</i> 5	3.60E6	1.03E6	6.29E5	50989	3.92
<i>leadLepEn</i> (GeV) ∈ (0, 42)	141926	2.08E7	3.65 <i>E</i> 5	7.24E5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	3.59
multiplicity ∈ (40, 130)	139545	1.66E7	2.36E5	5.24 <i>E</i> 5	2.62E6	9.07 <i>E</i> 5	4977	42751	3.29
$leadNeuEn (GeV) \\ \in (0, 41)$	138653	1.46E7	2.24E5	4.72E5	2.49E6	8.69E5	4552	42303	3.12
<i>Pt</i> (GeV) ∈ (20, 60)	121212	248715	1.56E5	2.48 <i>E</i> 5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
<i>PI</i> (GeV) ∈ (0, 50)	118109	52784	1.05 <i>E</i> 5	74936	7.30E5	1.13 <i>E</i> 5	847	34279	0.94
-log10(Y23) ∈ (3.375, +∞)	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76
InvMass (GeV) $\in (116, 134)$	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT ∈ (−0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47

nnhqq

nnZgg

other backgrounds

8 9 10

CEPC WS@NJU

23/10/2023

Benchmark analyses using Jet origin ID

Benchmark analyses using Jet origin ID

TABLE I: Summary of background events of $H \rightarrow b\bar{b}/c\bar{c}/gg$, Z, and W prior to flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL. Expectations are derived based on the background-only hypothesis.

	Bkg. (10^3)				Upper limit (10^{-3})					
	H	Z	W	$s \overline{s}$	$u \bar{u}$	$dar{d}$	sb	db	uc	ds
$ u \bar{ u} H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3
Comb.	-	-	-	0.75	0.91	0.95	0.22	0.23	0.39	0.86

- [28] J. Duarte-Campderros, G. Perez, M. Schlaffer, and A. Soffer. Probing the Higgs–strange-quark coupling at e^+e^- colliders using light-jet flavor tagging. *Phys. Rev.* D, 101(11):115005, 2020.
- [50] Alexander Albert et al. Strange quark as a probe for new physics in the Higgs sector. In *Snowmass 2021*, 3 2022.
- [59] J. de Blas et al. Higgs Boson Studies at Future Particle Colliders. JHEP, 01:139, 2020.
- [60] Jorge De Blas, Gauthier Durieux, Christophe Grojean, Jiayin Gu, and Ayan Paul. On the future of Higgs, electroweak and diboson measurements at lepton colliders. *JHEP*, 12:117, 2019.

CEPC WS@NJU

Critical Problems to be addressed

- Particle Flow
- **Color Singlet** Identification
- QCD hadronization,
- Beyond jets...

Summary

- PFA oriented detector design ~ CALICE laid solid foundation for the excellent reco/measurement at high energy frontier, especially with hadronic events at electron positron Higgs factories.
 - Better BMR shall always be pursues,
 - To be in cope with beam background & event rates,
 - Provide Pid: charged & even neutral hadron,
 - New AI tool... inject new momentum

- ...

- At current baseline detector & ParticleNet, jet origin identification is possible and has encouraging performances
 - Flavor Tagging of 91%/80%/64% & Charge Flip Rate of 18%/7%/16% for b/c/s jets
 - Gluon tagging at efficiency of 67%; slight distinguish power between u & d.
 - Higgs exotic/FCNC processes with hadronic final states limited to the BRs of 1E-3 to 1E-4;
 H→ss limited to 3 times SM prediction (vvH + IIH only)
 - Yet, it cannot figure out some Ks decays into 2 pion...
- Vision (long term): Jet origin id as Pid + Access to g(Hss) at future Higgs factory

Summary

- A lot to be understood...
 - V.S. Scaling of Jet energy, Polar angle/eta,
 - V.S. Collision environment: beam background, # PU
 - V.S. Detector geometry: VTX configuration, acceptance, etc
 - V.S. Jet Clustering algorithm, interactions with jet finding & Color Singlet identification
 - V.S. Different hadronization & fragmentation modes...

_

- V.S. algorithm architecture
- V.S. training & implementation procedure...

Backup

Three categories: b, c, & light

Figure 7. The migration matrix of ParticleNet (left) and LCFIPlus (right) at the CEPC.

Dependence on polar angle

CEPC WS@NJU

Comparison on Det. Optimization

	R (mm)	sigle-point resolution (μm)	material budget
Layer 1	16	2.8	$0.15\%/\mathrm{X}_{\mathrm{0}}$
Layer 2	18	6	$0.15\%/\mathrm{X}_{\mathrm{0}}$
Layer 3	37	4	$0.15\%/\mathrm{X}_{\mathrm{0}}$
Layer 4	39	4	$0.15\%/\mathrm{X}_{\mathrm{0}}$
Layer 5	58	4	$0.15\%/\mathrm{X}_{\mathrm{0}}$
Layer 6	60	4	$0.15\%/\mathrm{X}_{\mathrm{0}}$

Comparison on Det. Optimization

$$Tr_{mig} = 2.64 + 0.03 \cdot log_2 \frac{R_{material}^o}{R_{material}} + 0.02 \cdot log_2 \frac{R_{resolution}^o}{R_{resolution}} + 0.06 \cdot log_2 \frac{R_{radius}^o}{R_{radius}}$$
(4.2)

20

23/10/2023

Vcb from W decay

- Purity > 99.5% at Eff. 50% for $\mu \nu qq$ and 34% for $\tau(\mu 2\nu)\nu qq$
- Main backgrounds include:
 - $W \to c(d/s)$
 - μμqq

Vcb from W decay

$\mathrm{quark} \setminus \mathrm{tag}$	b_1	b_2	c_1	c_2	q_1	q_2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
c	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.000104	0.00477	0.00145	0.054	0.538	0.401

- μνqq
 - Statistical (relative) error: 1.5%, 3.4E-4, 3.4E-4
 - $|V_{cb}|$ Statistical error: 0.75%
- evqq
 - statistical (relative) error: 1.7%, 3.7E-4, 3.7E-4
 - $|V_{cb}|$ Statistical error: 0.85%

Impact on physics benchmarks

Key parameters of the CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 240 GeV)
 - Higgs factory: 4 M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 4 Tera Z boson Energy Booster(4.5Km
 - Precision test of the SM Low Energy Booster(0.4Km)

Booster(50Km

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)

IP4

- Direct search for new physics
- Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 23/10/2023

Complementary

e+ e- Linac (240m)

IP₂

IP3