BSM Higgs & SFOEWPT @ CEPC

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

Friends

My pronouns: he/him/his # MeToo

CEPC International Conference, Nanjing, October 23, 2023

Outline

- I. Context & Questions
- II. Theoretical Developments
- III. Collider Pheno Developments
- IV. Outlook

I. Context & Questions

Was There an Electroweak Phase Transition ?

- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation

Was There an EW Phase Transition?

How did we end up here ?

 How reliably can we compute the thermodynamics ?

n evolve differently as T evolves → ilities for symmetry breaking

$T_{EW} \rightarrow$ Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm +} \ \ldots \label{eq:V}$$

Was There an EW Phase Transition?

Bubble Collisions

BSM EWPT: Inter-frontier Connections

MJRM: 1912.07189

First Order EWPT from BSM Physics

MJRM: 1912.07189

First Order EWPT from BSM Physics

First Order EWPT from BSM Physics

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

• Non-perturbative

One-step

II. Theoretical Developments

Models & Phenomenology

What BSM Scenarios?

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel-Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Su 15, por Ce k 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chung, Karawu Levis 17, Culd, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19.

SM + Scalar Doublet (2HIOI) SOUP Scalar Triplet

MSSM

NMSSM

Turok, Zadosony 92, Danes, Freggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Frankel Huber, Schnuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huter, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18...

Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18 ...

Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14...

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15...

Thanks: J. M. No

Extensive references in MJRM: 1912.07189

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance
 (radiative barriers)
- RG invariance at T>0

BSM proposals

Non-perturbative (I.R.)

 Computationally and labor intensive

Theory Meets Phenomenology

Non-perturbative **A**.

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter B. Perturbative mark pert the • Montane
- - Mgg feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
 - Quantitative reliability needs to be verified

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Lattice Benchmarking

L. Niemi, MRM, G. Xia in prog

*M*_{h2} = 350 GeV

Lattice Benchmarking

L. Niemi, MRM, G. Xia in prog

 $M_{h2} = 350 \text{ GeV}$

- When a FOEWPT occurs, 2 loop PT gives a good description
- Lattice needed to determine when onset of FOEWPT occurs
- Future precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

EW Phase Transition: Singlet Scalars

Modified Higgs Self-Coupling

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble & Perelstein 0711.3018

EW Phase Transition: Singlet Scalars

Light Singlets: Exotic Higgs Decays

$h_2 \rightarrow h_1 h_1 \rightarrow 4b$

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206, Carena et al 2203.08206, Wang et al 2203.10184,

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206, Carena et al 2203.08206, Wang et al 2203.10184,

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

- 1 or 2 step
- Non-perturbative

Real Triplet & EWPT: Novel EWSB

GW & EWPT Phase Diagram

- Single step transition: GW well outside LISA sensitivity
- Second step of 2-step transition can be observable

1

0.100

Latent heat

 $m_{\Sigma} = 200 \text{ GeV}$

0.010

 α

0.001

GW & EWPT Phase Diagram

BMA:
$$m_{\Sigma} + h \rightarrow \gamma \gamma$$

BMA': BMA + $\Sigma^{0} \rightarrow ZZ$

Friedrich, MJRM, Tenkanen, Tran 2203.05889

- Two-step
- EFT+ Non-perturbative

Nucleation

Tunneling @ T>0: Gravitational Waves

Amplitude & frequency: latent heat & intrinsic time scale

Normalized latent heat

$$\begin{aligned} \Delta Q &= \Delta F + T \Delta S \\ S &= -\partial F / \partial T \\ F &\approx V \end{aligned}$$

 $\alpha = \frac{30\Delta q}{\pi^2 g_* T^4}$

Time scale

$$\frac{\beta}{H_*} = T \frac{d}{dT} \frac{S_3}{T}$$

$$\Delta Q \approx \Delta V - T \partial \Delta V / \partial T$$

T=0: S. Coleman, PRD 15 (1977) 2929

Tunneling @ T>0

Scalar Quantum Field Theory

Tunneling rate / unit volume:

Tunneling @ T>0

Radiative barriers → st'd method gauge-dependent

Tunneling rate / unit volume:

Tunneling @ T>0

Theoretical issues:

- Radiatively-induced barrier (St'd Model) → gauge dependence
 - *T* = 0 Abelian Higgs: *E*. Weinberg & *D*. Metaxas: hep-ph/9507381
 - T=0 St'd Model: A. Andreassen, W. Frost, M. Schwartz 1408.0287
 - *T* > 0 Gauge theories: recently solved in 2112.07452 (→ PRL) and 2112.08912
- Multi-field problem (still gauge invar issue)
 - Cosmotransitions: C. Wainwright 1109.4189
 - Espinosa method: J. R. Espinosa 1805.03680

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu}\Phi)^* (D_{\mu}\Phi) + \mu^2 \Phi^* \Phi + \lambda (\Phi^*\Phi)^2 + \mathcal{L}_{\rm GF} + \mathcal{L}_{\rm FP}$$

- Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int \mathrm{d}^3 x \Big[V^{\mathrm{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) \left(\partial_i \phi \right)^2 + \dots \Big]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$
(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu}\Phi)^* (D_{\mu}\Phi) + \mu^2 \Phi^* \Phi + \lambda (\Phi^*\Phi)^2 + \mathcal{L}_{\rm GF} + \mathcal{L}_{\rm FP}$$

- Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int \mathrm{d}^3 x \Big[V^{\mathrm{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) \left(\partial_i \phi \right)^2 + \dots \Big]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 y^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

G.I. pertubative expansion

G.I. pertubative expansion only valid up to NLO $\rightarrow \Delta$: higher order contributions only via other methods

Tunneling @ T>0: Take Aways

- For a radiatively-induced barrier, a gauge-invariant perturbative computation of nucleation rate can be performed for S₃ to O (g^{-1/2}) by adopting an appropriate power counting for T in the vicinity of T_{nuc}
- Abelian Higgs example generalizes to non-Abelian theories as well as other early universe phase transitions
- Remaining contributions to Γ_{nuc} beyond $O(g^{-1/2})$ in S_3 and including long-distance (nucleation scale) contributions require other methods
- Assessing numerical reliability will require benchmarking with non-perturbative computations 38

III. Collider Pheno Developments

Singlets: Resonant Di-Higgs & $H_2 \rightarrow VV$

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

SFOEWPT Min Benchmarks:

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 40 Yongchao Zeng, Wenxing Zhang 2211.0303612

Singlets: Resonant Di-Higgs & $H_2 \rightarrow VV$

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

100 TeV accessible

SFOEWPT Min Benchmarks:

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 41 Yongchao Zeng, Wenxing Zhang 2211.0303612

Singlets: Resonant Di-Higgs & $H_2 \rightarrow VV$

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

"Smoking gun" region

Parameter exclusion region

100 TeV accessible

SFOEWPT Min Benchmarks:

- Observation of 4I channel would indicate existence of heavy resonance consistent with xSM SFOEWPT
- "Smoking gun" region would provide nearly definitive evidence & narrow down model parameter space
- Exclusion would leave ample room for 100 TeV pp discovery

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 42 Yongchao Zeng, Wenxing Zhang 2211.0303612

Complex Singlet: DM + EWPT

Original Model:

- SM + complex scalar singlet
- Global U(1): broken spontaneously & softly
- Particle spectrum
 - Mixed doubletsinglet scalars h_{1.2}
 - Scalar dark matter A

V. Barger, P. Langacker, M. McCaskey, MJRM, G. Shaugnessy 0811.0393 Yizhou Cai, MJRM, Lei Zhang, Wenxing Zhang 2311.NNNNN

Complex Singlet: DM + EWPT

Yizhou Cai, MJRM, Lei Zhang, Wenxing Zhang 2311.NNNNN

IV. Outlook

Was There an Electroweak Phase Transition ?

- Answering this question is an important and exciting challenge for Higgs Physics at the CEPC/FCC-ee/ILC
- The relevant scale T_{EW} makes this physics a prime target for collider and gravitational wave probes
- The EWPT question entails a rich interplay of model building, thermal QFT, phenomenology & experiment
- The collider gravitational wave "inverse problem" has emerged as a particularly compelling arena for further exploration and opportunity for the CEPC community and beyond

Was There an Electroweak Phase Transition ?

- Answering this question is an important and exciting challenge for Higgs Physics at the CEPC/FCC-ee/ILC
- The relevant scale T_{FCV} makes this physics a prime target for collider and gravitational wave probes
- The EWPT question entails a rich interplay of model building, thermal QFT, phenomenology & experiment
- The collider gravitational wave "inverse problem" has emerged as a particularly compelling arena for further exploration and opportunity for the CEPC community and beyond

S. Coleman, PRD 15 (1977) 2929

Tunneling @ T=0: Coleman

Scalar Quantum Field Theory

Rotational symmetry

Inputs from Thermal QFT

Thermodynamics

- Phase diagram: first order EWPT?
- Latent heat: GW

Dynamics

- Nucleation rate: transition occurs? T_N ? Transition duration (GW) ?
- EW sphaleron rate: baryon number preserved?

How reliable is the theory ?

Was There an EW Phase Transition?

Increasing m_h

Lattice	Authors	$M_{\rm h}^C$ (GeV)
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ? SFOEWPT ?

EWPT & Perturbation Theory: IR Problem

$$f_B(E,T) \longrightarrow \frac{T}{m}$$

Field-dependent thermal mass

$$m^2(\varphi, T) \sim C_1 g^2 \varphi^2 + C_2 g^2 T^2 \equiv m_T^2(\varphi)$$

• Near phase transition: $\varphi \sim 0$

•
$$m_T(\varphi) < g T$$

EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: $g_{eff} \sim 0.8$ in vicinity of EWPT for $m_H \sim 70$ GeV *

* Kajantie et al, NPB 466 (1996) 189; hep/lat 9510020 [see sec 10.1]

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu} \Phi)^* (D_{\mu} \Phi) + \mu^2 \Phi^* \Phi + \lambda (\Phi^* \Phi)^2 + \mathcal{L}_{\rm GF} + \mathcal{L}_{\rm FP}$$

- Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int \mathrm{d}^3 x \Big[V^{\mathrm{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) \left(\partial_i \phi \right)^2 + \dots \Big]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

G.I. pertubative expansion only valid up to NLO $\rightarrow \Delta$: higher order contributions only via other methods

SSB @ T>0 : Power Counting

Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL

Near cancellation for $T \sim T_c$

For a range of $T \sim T_{nuc}$: N = 1

 $\mu^{2}_{eff} \sim O(g^{2+N}T^{2}) < O(g^{2}T^{2})$

55

Power Counting

Tunneling @ T>0: G.I. & Nielsen Identities

Adopt appropriate power-counting in couplings

Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

Order-by-order consistent with Nielsen Identities

$$\xi \frac{\partial S^{\text{eff}}}{\partial \xi} = -\int \mathrm{d}^d \mathbf{x} \frac{\delta S^{\text{eff}}}{\delta \phi(x)} \, \mathcal{C}(x)$$

$$\mathcal{E}(x) = \frac{ig}{2} \int \mathrm{d}^d \mathbf{y} \Big\langle \chi(x) c(x) \bar{c}(y) \\ \times \left[\partial_i B_i(y) + \sqrt{2}g \xi \phi \chi(y) \right] \Big\rangle$$

58

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm \textbf{+}} \ \ldots$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

$$T_0 \sim 140 \; \text{GeV} \equiv T_{EW}$$

Real Triplet & EWPT: Benchmark PT

Niemi, R-M, Tenkanen, Weir 2005.11332

Real Triplet: Crossover vs 2nd Order

Niemi, R-M, Tenkanen, Weir 2005.11332

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance
 (radiative barriers)
- RG invariance at T>0

BSM proposals

Non-perturbative (I.R.)

Computationally and labor intensive

61

Inputs from Thermal QFT: EFTs

Thermodynamics

- Phase diagram: first order EWPT?
- Latent heat: GW

EFT 1

Dynamics

EFT 2

- Nucleation rate: transition occurs? T_N ? Transition duration (GW) ?
- EW sphaleron rate: baryon number preserved?

EFT 3

High-T EFT: Dimensional Reduction

DR 3dEFT: Scales

Non-zero Matsubara modes BSM mass scale: can be > or < π T Thermal masses Nucleation scale ~ 1/r_{bubble} Light scale

64

Meeting ground: 3-D high-T effective theory

Matching: Two Elements

Dimensional Reduction

All integrals are 3D with prefactor T \rightarrow Rescale fields, couplings...

$$\int \frac{d^4k}{(2\pi)^4} \longrightarrow \frac{1}{\beta} \sum_n \int \frac{d^3k}{(2\pi)^3}$$

•
$$\varphi^2_{4d} = T \varphi^2_{3d}$$

• $T \lambda_{4d} = \lambda_{3d}$

Thermal Loops

Equate Greens functions

$$\phi_{3d}^2 = \frac{1}{T} \left[1 + \hat{\Pi}'_{\phi}(0,0) \right] \phi^2$$

$$a_{2,3} = T \left[a_2 - a_2 (\hat{\Pi}'_H(0) + \hat{\Pi}'_{\Sigma}(0)) + \hat{\Gamma}(0) \right]$$

Quartic coupling

Field

Meeting ground: 3-D high-T effective theory

Thermal resummations: systematically implemented

Meeting ground: 3-D high-T effective theory

When \mathcal{L}_{full} contains BSM interactions, λ_3 and $\mu_{\phi,3}$ can accommodate first order EWPT and $m_h = 125$ GeV

Lattice simulations exist

Meeting ground: 3-D high-T effective theory

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

- Assume BSM fields are "heavy" or "supeheavy" : integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

- Assume BSM fields are "heavy" or "supeheavy" : integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)
Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

Real Triplet: One-Step EWPT

FOEWPT

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500

Non-perturbative

74

