Status of $H \rightarrow Z\gamma$ search

- Oct. 27th, 2023

Yanping Huang IHEP, CHINA

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

Introduction

The Higgs particle is responsible for the masses of elementary particles.

Main Higgs production modes @ LHC

-linear production at tha I UC

- Good resolution, efficiency and S/B separation
- Low fraction of 6%

 $\frac{1}{d\Gamma^i}$

Search for $H \rightarrow Z\gamma$ (a) Run2 (ATLAS)

- Decay rate is quite low for the e/μ channel only
- Higgs mass resolution improvement
 - + 3% gain from FSR and 7% (13%) gain from Z-mass constraint for $e(\mu)$ channel

candidates	channel	single/di-lepton	trigger name
2015 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e24_lhmedium_L1EM20VH
			HLT_e60 <u>_lhmedium,HLT</u> _e120_lhloose
2015 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e12_lhloose12EM10VH
2016 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e26_lhtight_nod0_ivarloose
			HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod
2016 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e17_lhvloose_nod0
2017-2018 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e26_lhtight_nod0_ivarloose
			HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod
2017-2018 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e24_lhvloose_nod0
2015 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_imedium,HLT_mu50
2015 data	$Z(ightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1
2016 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_imedium
			HLT_mu26_ivarmedium,HLT_mu50
2016 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1
2017-2018 data	$Z(ightarrow \mu\mu)\gamma$	single muon	HLT_mu26_ivarmedium,HLT_mu50
2017-2018 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1

Major in low pt region: ~20GeV for photon, ~50GeV and 30GeV for leading lepton and subleading lepton Single-/Di-lepton triggers: High efficiency achieved with 95.6% for e channel and 92.2% for µ channel

Search for $H \rightarrow Z\gamma$ (a) Run2 (ATLAS)

Higgs signal mode include: ggH, VBF, VH, ttH.

Category	S_{68}/B_{68} [10 ⁻²]	$S_{68}/\sqrt{S_{68}}$ -
VBF-enriched	16.2	0.60
High relative $p_{\rm T}$	7.0	0.70
High p _{Tt} ee	2.1	0.45
Low p_{Tt} ee	0.5	0.43
High $p_{Tt} \mu \mu$	1.9	0.47
Low $p_{Tt} \mu \mu$	0.5	0.47
Inclusive	0.7	0.86

Dedicated optimization only for the VBF and ggF production modes

Simultaneous fit performed on m_{Zy} spectra of the mutual categories

PLB 809 (2020) 135754

- The analysis is still statistical dominantly
- function form

Results

	$\Delta \mu / \mu$ (exp.)	$\Delta \mu / \mu$ (obs.)
SM prediction (mu - 125 00G	82.8%	43.1%
	28.4%	14.7%
	2.4%	2.0%
$A D_{r}(II - 7) = 1.54 \times 10^{-3}$	1.6%	1.7%
$\bullet Br(H \rightarrow Z\gamma) = 1.54 \times 10^{-5}$	1.8%	1.6%
	1.1%	1.5%
◆ σ (pp→H)×Br(H→Zγ)=83.1fb	2.1%	2.0%
	6.1%	6.9%
	5.9%	5.7%
◆ Obs (Exp) μ: 3.6 (1.7)×SM @95	2.1%	2.4%
	2.8%	2.2%
	88.1%	46.7%

Major systematic uncertainty is spurious signal due to the decision from background

Search for $H \rightarrow Z\gamma$ (a) Run2 (CMS)

$138{\rm fb}^{-1}$	Lepton		Dijet 1	Dijet 2	Dijet 3	Untagged 1	Untagged 2	Untaggeo
SM signal vield								
ggH	0.51	e^+e^- u^+u^-	$1.10 \\ 1.41$	1.62 2.05	9.44 12.1	6.89 8.52	7.35 9.17	29.8 38.0
VBF	0.09	e^+e^- u^+u^-	1.94 2.40	$0.76 \\ 0.97$	1.13 1.43	$0.71 \\ 0.89$	0.35 0.43	0.92 1.18
$VH + t\bar{t}H$	1.84	e^+e^- u^+u^-	0.04 0.05	0.13 0.16	1.89 2.36	0.31 0.39	0.17 0.21	0.45 0.57
SM resonant background		1 1						
$H \rightarrow \mu^+ \mu^-$	0.14	$\mu^+\mu^-$	0.27	0.27	0.43	0.62	0.49	2.02
Mass resolution (GeV)	2.12	e^+e^- $\mu^+\mu^-$	1.91 1.52	2.06 1.61	2.15 1.72	1.80 1.37	1.97 1.42	2.12 1.62
Data yield	1485		168	589	11596	1485	1541	2559
S/\sqrt{B}	0.06		0.54	0.24	0.26	0.45	0.35	0.53

- Higgs signal mode include: ggH, VBF, VH, ttH
- Dedicated categorization optimization: VH-rich, VBF-rich, ggH-rich
- Discrete profiling method for the background function decision:
 - It float the background function form in each category
 - + take into account the n.d.f. difference of background functions

arxiv: 2204.12945

Search for $H \rightarrow Z\gamma$ (a) Run2 (CMS)

First evidence of $H \rightarrow Z\gamma$ with ATLAS-CMS combination

		ATLAS	CMS	ATLAS+CMS
	μ	$2.0^{+1.0}$ -0.9	$2.4^{+1.0}$ -0.9	$2.2 \pm 0.6^{+0.3}$ -0.2
	Obs. Z	2.2σ	2.6σ	3.4σ
20	Exp. Z	1.2σ	1.1σ	1.6σ
ATLAS 18 <i>LHC</i> Run	and CMS	—— ATLAS + CMS		

Event Categorization

Category		Definition		
VBF Category	2 jets >25 GeV 2 selected jets mu $m_{jj} > 500$ GeV $\Delta \varphi(\ell \ell \gamma, jj) > 2.5$ min($\Delta R(obj, j_i)$)	$ st be >30 GeV if forward (\eta > 2.5) \eta_{Zepp} < 2.0 • \Delta \eta_{jj} > 2.7 8 > 1.5 for j_i = 0,1 and obj = \gamma, \ell_0, \ell_1 $		
Low-p _{TThrust} Category		Fails VBF Category selection $\ell \ell \gamma p_{TThrust} > 100 \text{ GeV}$		
Inclusive (Rest) Category		All remaining events		

 $H \rightarrow \gamma^* \gamma$ Search Status Report – July 21, 2020

6

DESY ATLAS EXPERIMENT BODIZATION

Category	Events	S ₉₀	B_{90}^{N}	$B_{H\to\gamma\gamma}$	f ₉₀ [%]
ee resolved VBF-enriched	10	0.4	1.6	0.009	20
ee merged VBF-enriched	15	0.8	2.0	0.07	27
$\mu\mu$ VBF-enriched	33	1.3	5.9	_	18
ee resolved high-p _{Tt}	86	1.1	12	0.02	9
ee merged high- p_{Tt}	162	2.5	18	0.2	12
$\mu\mu$ high- p_{Tt}	210	4.0	34	_	11
ee resolved low-p _{Tt}	3713	22	729	0.5	2.9
ee merged low-p _{Tt}	5103	29	942	2	3.0
$\mu\mu$ low- p_{Tt}	9813	61	1750	_	3.4

<u>ged-e, resolve-e) × (VBF, high-Pt, low-Pt)</u>

Results

PLB 819 (2021) 136412

• Observed (expected) significance for mH=125.09GeV is 3.2σ (2.1 σ)

Focus on the $Z \rightarrow ee/\mu\mu$ decay modes: high efficiency, good resolution and low s/b ratio

- mass, the di-leptons are quite collimated, out of detector granularity for electron pairs.
- **Customized electron ID (MVA ID)**: MVA (XGBoost) using shower shape variables and
 - track-related variables with a signal efficiency of 99% @ 5TeV
- Mix-ID: combine standard loose ID and MVA ID with a logical OR which improve the efficiency by 6.2% -12.7%
- ev pair selection: one of electrons is misreconstructed as a photon, and retrieve via tracking matching

Challenge for Merged electron identification: due to boost effect for the very high resonance

and	n _{Si}
V]	1/

New resonance search in Zy decay mode

ATLAS-CONF-2023-030

- Due to the dedicated identification for boost di-electron pair: Search range extends up to 3.4TeV Sensitivity improved with a factor of 1.9 - 4 Available for further search extension in future

Recap of $H \rightarrow Z\gamma$ search (a) LHC

- rate, current results are focused on e/μ channel:
 - + First observed evidence of 3.4 σ with ATLAS-CMS combination
 - evidences of $H \rightarrow \gamma^* \gamma$ and extend search range to 3.5TeV
- Room for possible improvement:
 - Optimization for the reconstruction and identification of low pt photon and lepton
 - particles. (15GeV Jet threshold @ L1 corresponds to ~50GeV Jet @ HLT)

Run2 studies have been finished: due to the high efficiency, good resolution and signal-background

With dedicated merge di-electron identification for the low-pt case and boost case, achieve the

Explore the Z hadronic decays and invisible decays: challenge trigger selection due to the soft final

Coupling measurement

Assumptions:

- Single state, spin 0 and CP-even, Narrow-width approximation
- **k-framework Methodology:** parametrize deviations with coupling scale factors $\{\kappa_x\}$
 - A simple and intuitive parametrization of the potential derivation with the limitation for its understanding
 - BSM decays parametrized including invisible decays and untagged decays
 - + CEPC has a clear advantage on κ_Z measurement and BR_{inv} constraint

EFT:

Directly introduce the new physics effect with the higher dimension operators

precision reach on effective Higgs couplings from SMEFT global fit

Most of parameters can reach the precision of ~1% \bullet For the rare decays, HZy and Hµµ have comparable sensitivities among different colliders

Prospect of HZy coupling

C-hh: 0.7%

- \bullet Search for H \rightarrow Zy rare decay can probe the Higgs loop interaction in SM and BSM physics
- $All the H/X \rightarrow Z\gamma$ studies with full-Run2 data done:
 - + First observed evidence of 3.4σ was achieved with ATLAS-CMS combination
 - Evidence of $H \rightarrow \gamma^* \gamma$ search with a significance of 3.2 σ
 - Zγ high mass search successfully extend to 3.4TeV
- More promising results with higher statistics of Run3 and more sensitivity optimization

