# **CP** violation in b physics Qin Qin **Huazhong University of Science and Technology**

# The 2023 international workshop on the high energy **Circular Electron-Positron Collider**







Nanjing, 23-27 October 2023





# **CP violation — Holy Grail of flavor physics**

• One of the Sakharov's criteria of baryon asymmetry of universe

Requires new source of CP violation

Determination of CKM matrix phase angles

To test the unitarity of the CKM matrix

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{2} \end{pmatrix}$$

Open windows to new dynamics beyond the SM

[Sakharov, '67]







• CP violation measured in

→ Decay, mixing, interference of decay w/ and w/o mixing  $ightarrow K, B^{0,+}, B_s^0, D$  mesons



- No evidence of new CPV source beyond the SM
- What should/can CEPC (and other future experiments) do?

#### **Status**



#### **Do something new**

- Lager statistics
- Better acceptance and detection
- Better time resolution
- Better flavor tagging

- New precision:  $B_s \to J/\psi K, B^0 \to \pi^0 \pi^0$
- New channel:  $B^0 \rightarrow \gamma \gamma$

. . . . . .

- New observable: double-mixing CPV
- New methodology: T-odd and -even CPV



#### **New Precision**

#### An example: $B_{c} \rightarrow J/\psi \phi$

- $B_s \rightarrow J/\psi \phi$ : important for determination of the CKM phase  $\phi_s = -2\beta_s$
- All charged-particle final state: LHCb likes that.
- **CEPC**, as a Tera-Z, almost 2 orders fewer B mesons produced
- but has significantly better detection efficiency, flavor tagging, time resolution than LHCb

|                                                                                        | LHCb (HL-LHC)       | CEPC (Tera-Z)          | CEPC/LHCb |                |
|----------------------------------------------------------------------------------------|---------------------|------------------------|-----------|----------------|
| $b\overline{b}$ statics                                                                | $43.2\times10^{12}$ | $0.152 \times 10^{12}$ | 1/284     |                |
| Acceptance×efficiency                                                                  | 7%                  | 75%                    | 10.7      |                |
| Br                                                                                     | $6 \times 10^{-6}$  | $12 \times 10^{-6}$    | 2         |                |
| Flavour tagging*                                                                       | 4.7%                | 20%                    | 4.3       |                |
| Time resolution* $\left(\exp\left(-\frac{1}{2}\Delta m_s^2 \sigma_t^2\right)^2\right)$ | 0.52                | 1                      | 1.92      | (5 fs vs 20-30 |
| scaling factor $\xi$                                                                   | 0.0014              | 0.0019                 | 0.8       |                |
| $\sigma(\phi_s)$                                                                       | 3.3 mrad            | 4.3 mrad               |           |                |

 $\beta_s \equiv \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$ 





#### An example: $B_s \rightarrow J/\psi \phi$



**CEPC** measurement of  $\phi_s$ :

- Tera-Z, competitive with HL-LHC
- 10 Tera-Z, better than HL-LHC

[Li,Ruan,Zhao, 2205.10565]

## Another example: $B^0 \rightarrow \pi^0 \pi^0$

•  $B^0 \rightarrow \pi^0 \pi^0$ : used to extract the CKM angle  $\alpha$ , together with other isospin-partner channels  $B^0 \to \pi^+\pi^-$  and  $B^+ \to \pi^+\pi^0$ 

All <u>neutral-particle final state</u>: LHCb fails, CEPC wins Belle II (statistics)

| <i>b</i> -hadrons | Belle II                                                           | LH |
|-------------------|--------------------------------------------------------------------|----|
| $B^0,  ar{B}^0$ ( | $5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ |    |
| $B^{\pm}$         | $5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ |    |
| $B^0_s,ar{B}^0_s$ | $6.0 \times 10^8$ (5 ab <sup>-1</sup> on $\Upsilon(5S)$ )          |    |

• CEPC, perfect reconstruction of  $\pi^0$  by  $\gamma\gamma$ 

 $\alpha \equiv \arg[-(V_{td}V_{tb}^*)/(V_{ud}V_{ub}^*)]$ 





### Another example: $B^0 \rightarrow \pi^0 \pi^0$

- Tera-Z:  $\alpha(\pi\pi) = (91.8 \pm 0.4)^{\circ}$
- 40 times better than world average
- 5 times better than Belle II

| Parameters                                   | Tera- $Z$ Projection  |
|----------------------------------------------|-----------------------|
| $\sigma_{\mathcal{B}^{00}}/\mathcal{B}^{00}$ | 0.45%                 |
| $\sigma_{\mathcal{B}^{+0}}/\mathcal{B}^{+0}$ | 0.19%                 |
| $\sigma_{\mathcal{B}^{+-}}/\mathcal{B}^{+-}$ | 0.18%                 |
| $\sigma_{a_{	ext{CP}}^{00}}$                 | $\pm (0.014 - 0.018)$ |
| $\sigma_{C_{	ext{CP}}^{+-}}$                 | $\pm (0.004 - 0.005)$ |
| $\sigma_{S_{\rm CP}^{+-}}$                   | $\pm (0.004 - 0.005)$ |



[Wang, Descotes-Genon, Deschamps, Li, Chen, Zhu, Ruan, JHEP, '22]



### **New Channel**

# An example: $B^0 \rightarrow \gamma \gamma$

- $B^0 \rightarrow \gamma \gamma$ : simplest decay of B meson, like  $B_{d,s} \rightarrow \mu \mu$ 
  - Sensitive to <u>dynamics beyond the SM</u> (FCNC), e.g. <u>CP violation</u>
  - Clean environment to address the intricate strong interaction mechanism of the heavymeson systems
- Silver channel of Belle II



**Belle II Physics Book** 



 $B \to K \tau l$ 

Standard model prediction:

$$B(B^0 \to \gamma \gamma) = (1.9^{+1.1}_{-1.0}) \times 10^{-8}$$

- **BEIIE II** precision Observables Belle 0.  $\operatorname{Br}(B_d \to \gamma \gamma)$  $A_{CP}(B_d \to \gamma \gamma)$  $\operatorname{Br}(B_s \to \gamma \gamma)$

 $\sigma(B)/B \approx 3\%$ ,

An example:  $B^0 \rightarrow \gamma \gamma$ [Shen, Wang, Wei, JHEP, '20] [QQ, Shen, Wang, Wang, PRL, '23]  $A_{\rm CP}(B^0 \to \gamma \gamma) \approx 24 \%$ 

| $71 \mathrm{ab^{-1}} \left(0.12 \mathrm{ab^{-1}}\right)$ | Belle II $5  \mathrm{ab}^{-1}$ | Belle II $50  \mathrm{ab}^{-1}$ |
|----------------------------------------------------------|--------------------------------|---------------------------------|
| < 740%                                                   | 30%                            | 9.6%                            |
| —                                                        | 78%                            | 25%                             |
| < 250%                                                   | 23%                            | _                               |

• Tera-Z precision: (Assuming efficiency\*purity = 50% (twice  $B^0 \rightarrow \pi^0 \pi^0$ ) with  $10^{11} B^0$ )

$$\sigma(A_{\rm CP}) \approx 7.8\%$$

(Wild estimation)

Evidence of  $A_{CP}(B^0 \rightarrow \gamma \gamma)$  with Tera-Z.

**Discovery of**  $A_{CP}(B^0 \rightarrow \gamma \gamma)$  with 4 Tera-Z!



#### **New Observable**

### **Traditional CP violation observables**

- Common CPV observables  $\checkmark$  CPV in decay (direct CPV)  $|M^0 \to f| \neq |\bar{M}^0 \to \bar{f}|$  $\checkmark$  CPV in mixing (indirect CPV)  $|M^0 \to \bar{M}^0| \neq |\bar{M}^0 \to M^0| \ (|q/p| \neq 1)$ ✓ CPV in interference between a decay without and with *initial* mixing  $(M^0 \to f) + (M^0 \to \overline{M}^0 \to f)$
- CPV in interference between a decay without and with <u>final</u> mixing  $(P \rightarrow M^0) + (P \rightarrow \overline{M}^0 \rightarrow M^0)$



[Wang,Li,Yu,PRL119 (2017)181802]

# **Double mixing CP violation**

neutral mesons in cascade decays

• Consider 
$$B_s^0 \to \rho^0 K \to \rho^0 \pi^- e^+ \nu$$
  
Upper path:  $B_s^0 \to \rho^0 \overline{K}^0 \to \rho^0 K^0 \to$   
Lower path:  $B_s^0 \to \overline{B}_s^0 \to \rho^0 K^0 \to \rho^0$ 

General Case:

$$(M_1^0 \to (\overline{M}_2^0) \to M_2^0) + (M_1^0)$$

It does not require nonzero strong phases!

Strong phases can be extracted from experiment data without theoretical input.

<u>A 2-D time dependence analysis can be performed.</u>

**Double mixing CP violation:** induced by interference of different mixing paths of



[Shen,Song,**QQ**, 2301.05848]



# **Double mixing CP violation – Significance**



• Benefiting from good time resolution, CEPC can do the 2D time dependence analysis

# **Double mixing CP violation – Significance**





[Shen,Song,**QQ**, 2301.05848]



# **Double mixing CP violation – CKM phase**

• Take 
$$B_d^0(t_1) \rightarrow D^0 K^0(t_2) \rightarrow (K^- \pi^+)(\pi \langle D^0 \bar{K}^0 | \bar{B}^0 \rangle = \langle \bar{D}^0 K^0 | B^0 \rangle e^{i\delta_1}$$
  
 $\langle D^0 K^0 | B^0 \rangle = \langle \bar{D}^0 K^0 | B^0 \rangle r_B e^{i(\delta_s + \delta_2)}$   
3 Parameters:  $r_B, \, \delta_s, \, \delta_w \equiv \phi_2 - \phi_1 + \delta_1$ 

$$A_{CP}(t_1, t_2) = \frac{e^{-\Gamma_B t_1} \sin \Delta m_B t_1}{e^{-\Gamma_B t_1} [C'(t_2)(1 + \cos \Delta m_B t_1)]}$$

$$S(t_2) = \frac{e^{-\Gamma_2 t_2}}{2} r_B[-2\sin\delta_w(\cos\delta_s) \sinh\frac{\Delta\Gamma_K}{2} t_2 + C'(t_2) = \frac{e^{-\Gamma_2 t_2}}{2} [(1+r_B^2)\cosh\frac{\Delta\Gamma_K}{2} t_2 + (1-r_B^2)\cosh\frac{\Delta\Gamma_K}{2} t_2 + (1-r_B^2)\cosh\frac{\Delta\Gamma_K}{2} t_2 + (1-r_B^2)\cosh\frac{\Delta\Gamma_K}{2} t_2 + C'(t_2) = \frac{e^{-\Gamma_2 t_2}}{2} r_B[2\cos\delta_w\sin\delta_s\sinh\frac{\Delta\Gamma_K}{2} t_2 + C'(t_2) + C'(t_2) = \frac{e^{-\Gamma_2 t_2}}{2} r_B[2\cos\delta_w\sin\delta_s\sinh\frac{\Delta\Gamma_K}{2} t_2 + C'(t_2) + C'(t_2) = \frac{e^{-\Gamma_2 t_2}}{2} r_B[2\cos\delta_w\sin\delta_s\sinh\frac{\Delta\Gamma_K}{2} t_2 + C'(t_2) + C'(t_2) = \frac{e^{-\Gamma_2 t_2}}{2} r_B[2\cos\delta_w\sin\delta_s\sinh\frac{\Delta\Gamma_K}{2} t_2 + C'(t_2) + C'($$



 $2\cos\delta_w\cos\delta_s\sin\Delta m_K t_2$ ] [Shen,Song,**QQ**, 2301.05848] 18





# **Double mixing CP violation – CKM phase**

• Take 
$$B^0_d(t_1) \to D^0 K^0(t_2) \to (K^- \pi^+)(\pi^- \pi^+)$$



 $e^+e^-\bar{\nu}$ ) as an example



## **Double mixing CP violation – CKM phase**

• Take 
$$B^0_d(t_1) \to D^0 K^0(t_2) \to (K^- \pi^+)(\pi^- \pi^+)$$

#### Assuming 3000 events (Belle II):

| Parameters     | <b>Central value</b> | Unce |
|----------------|----------------------|------|
| r <sub>B</sub> | 0.367                | ± 0. |
| $\delta_s$     | 164                  | ±    |
| $\delta_w$     | 109                  | ±    |

<u>Input:</u>  $2\beta + \gamma = (109.9 \pm 3.7)^{\circ}$ 

#### $\tau^+ e^- \bar{\nu}$ ) as an example



[Shen,Song,**QQ**, 2301.05848]



## New methodology

(Baryon)

| <b>b</b> -hadrons                | Belle II                                                           | LHCb $(300  {\rm fb}^{-1})$ | $\mathrm{Tera}$ -Z   |
|----------------------------------|--------------------------------------------------------------------|-----------------------------|----------------------|
| $B^0,  ar{B}^0$                  | $5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ | $3 	imes 10^{13}$           | $1.2 \times 10^{11}$ |
| $B^{\pm}$                        | $5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ | $3 \times 10^{13}$          | $1.2 	imes 10^{11}$  |
| $B^0_s,ar{B}^0_s$                | $6.0 \times 10^8$ (5 ab <sup>-1</sup> on $\Upsilon(5S)$ )          | $1 \times 10^{13}$          | $3.1 	imes 10^{10}$  |
| $B_c^{\pm}$                      | _                                                                  | $1 \times 10^{11}$          | $1.8 \times 10^8$    |
| $\Lambda_b^0, \ ar{\Lambda}_b^0$ | _                                                                  | $2 \times 10^{13}$          | $2.5 	imes 10^{10}$  |

#### **Baryon factories!**

[Wang, Descotes-Genon, Deschamps, Li, Chen, Zhu, Ruan, JHEP, '22]



## **Baryon is NOT meson!**

#### Difference between meson and baryon

- Meson has two quarks.
- Baryon has three quarks.

• All baryons has non-zero **spins**.



#### **Polarization induced observables**

- Lee-Yang parameters:  $\alpha$ ,  $\beta$ ,  $\gamma$



$$A(\Lambda^0 \to p\pi) = \bar{u}_p(S + P\gamma_5)$$

Theoretically, they are expressed by **partial wave amplitudes** (helicity amplitudes  $h_{+} = S \pm P$ ) as:

$$\alpha = \frac{2Re(S^*P)}{|S|^2 + |P|^2}, \quad \beta = \frac{2Im(S^*P)}{|S|^2 + |P|^2}, \quad \gamma =$$

Experimentally, they are measured by **proton polarizations**:

$$P_p = \frac{(\alpha + \cos \theta)\hat{p} + \beta\hat{p} \times \hat{s} + \gamma(\hat{p})}{1 + \alpha \cos \theta}$$

Polarizations/helicities of particle provide fruitful information to build more observables.

General Partial Wave Analysis of the Decay of a Hyperon of Spin  $\frac{1}{2}$ 

T. D. LEE\* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

 $)u_{\Lambda}$ 

$$\frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha\cos\theta$$

 $\hat{p} \times \hat{s} \times \hat{p}$ 

#### **Polarization induced CP violation**

• Meson case:

#### Direct CP violation



#### • Baryon case:

e.g., BESIII measure the Lee-Yang parameters in  $\Xi^- \to \Lambda \pi^- \to p 2 \pi^-$  and the induced CPV



$$\left(\frac{\beta+\bar{\beta}}{\alpha-\bar{\alpha}}\right)_{\Xi}\approx\omega_{P}-\omega_{S}$$

#### **Purely weak phase! Disaster disappears!**

[BESIII, Nature, '22]





#### **Polarization induced CP violation**

• The reason is the  $A_{CP}^{\alpha}$  and  $A_{CP}^{\beta}$  strong phase dependence:  $\sin \delta_s$  vs  $\cos \delta_s$ 



- Question: does this complementarity generally exist?
- Question: if yes, how to find them systematically?

- Whatever the strong phase is, either  $|\sin \delta|$  or  $|\cos \delta|$  would be larger than 0.7.
- If both of CPVs are measured, the strong phase can be determined.

 $2\pi$ 



### **T-odd correlation induced CP asymmetry**

 General conclusion: <u>Time-reversal-oc</u> <u>dependence</u> on strong phases

$$TQ_{-} = -Q_{-}T, \qquad \qquad A_{CP}^{Q_{-}} \equiv \frac{\langle Q_{-} \rangle - \langle \bar{Q}_{-} \rangle}{\langle Q_{-} \rangle + \langle \bar{Q}_{-} \rangle} \propto \cos \delta_{s}$$

if it satisfies two conditions: (i) for the final-state basis { $|\psi_n\rangle$ , n =1,2,...}, there is a unitary transformation U, s.t.  $UT |\psi_n\rangle = e^{-i\alpha} |\psi_n\rangle$ ; (2)  $UQ_-U^{\dagger} = Q_-$ .



[Wang, **QQ**, Yu, 2211.07332]

General conclusion: Time-reversal-odd correlation  $Q_{-}$  induces CPV with cosine

$$\begin{split} \langle \psi_m | Q_- | \psi_n \rangle &= \langle \psi_m | \mathcal{T}^{\dagger} \mathcal{T} | Q_- | \psi_n \rangle^* \\ &= - \langle \psi_m | \mathcal{T}^{\dagger} Q_- \mathcal{T} | \psi_n \rangle^* \\ &= - \langle \psi_m | \mathcal{T}^{\dagger} | \mathcal{U}^{\dagger} \mathcal{U} | Q_- | \mathcal{U}^{\dagger} \mathcal{U} | \mathcal{T} | \psi_n \rangle^* \\ &= - \langle \psi_m | \mathcal{T}^{\dagger} \mathcal{U}^{\dagger} | Q_- | \mathcal{U} \mathcal{T} | \psi_n \rangle^* \\ &= - \langle \psi_m | Q_- | \psi_n \rangle^* , \end{split}$$

 $A_{CP}^{Q_{-}} \propto \sin \delta_{w} \cos \delta_{s}$ 

 $A_{CP}^{Q_+} \propto \sin \delta_w \sin \delta_s$ 

#### **T-odd correlation induced CP asymmetry**

• Example 1. Triple product  $Q_1 \equiv (\vec{s}_1 \times \vec{s}_2) \cdot \hat{p}$  in  $P \to P_1 P_2$  $T: \overrightarrow{p} \to -\overrightarrow{p}, h \to h; \qquad U$  $T: Q_1 \to -Q_1;$ U

• Example 2. Triple product  $Q_p \equiv (\hat{p}_1 \times p_2)$  $T: \overrightarrow{p} \to -\overrightarrow{p};$ U $T: Q_p \to -Q_p;$ *U* =



$$Y = R(\pi) : -\overrightarrow{p} \to \overrightarrow{p}, h \to h$$

$$= R(\pi) : Q_1 \to Q_1$$

condition (i) condition (ii)



$$\hat{p}_2) \cdot \hat{p}_3 \text{ in } P \to P_1 P_2 P_3 P_4$$

$$= P : -\overrightarrow{p} \to \overrightarrow{p}$$
$$= P : Q_p \to -Q_p$$

condition (i) condition (ii)



#### [Wang, **QQ**, Yu, 2211.07332]



# **Complementarity: T-odd and -even CPV**

• For the decay  $\Lambda_b \to N^*(1520)K^*$ , three such T-odd correlations

**Triple product** Hepta product **Penta product** 

$$Q_{1} \equiv (\vec{s}_{1} \times \vec{s}_{2}) \cdot \hat{p} = \frac{i}{2} (s_{1}^{+} s_{2}^{-} - s_{1}^{-} s_{2}^{+})$$

$$Q_{2} \equiv (\vec{s}_{1} \cdot \hat{p})(\vec{s}_{2} \cdot \hat{p})Q_{1} + Q_{1}(\vec{s}_{1} \cdot \hat{p})(\vec{s}_{2} \cdot \hat{p}) = \frac{i}{2} s_{1}^{z} s_{2}^{z} (s_{1}^{+} s_{2}^{-} - s_{1}^{-} s_{2}^{+}) + \frac{i}{2} (s_{1}^{+} s_{2}^{-} - s_{1}^{-} s_{2}^{+}) s_{1}^{z} s_{2}^{z}$$

$$Q_{3} \equiv (\vec{s}_{1} \cdot \vec{s}_{2})Q_{1} + Q_{1}(\vec{s}_{1} \cdot \vec{s}_{2}) - Q_{2} = \frac{i}{2} (s_{1}^{+} s_{1}^{+} s_{2}^{-} s_{2}^{-} - s_{1}^{-} s_{1}^{-} s_{2}^{+} s_{2}^{+})$$

- Their expectations are imaginary helicity amplitude interferences  $\langle Q_3 \rangle = 2\sqrt{3} \operatorname{Im} \left( H_{+1,+\frac{3}{2}} H_{-1,-\frac{1}{2}}^* + H_{-1,-\frac{3}{2}}^* H_{+1,+\frac{1}{2}} \right)$
- Moreover, complementary T-even correlations are found

 $P_1 \equiv \vec{s}_1 \cdot \vec{s}_2 - (\vec{s}_1 \cdot \hat{p})(\vec{s}_2 \cdot \hat{p}), P_2 \equiv (\vec{s}_1 \cdot \hat{p})(\vec{s}_2 \cdot \hat{p})P_1 + P_1(\vec{s}_1 \cdot \hat{p})(\vec{s}_2 \cdot \hat{p}),$  $P_3 \equiv P_1^2 - [\vec{s}_1^2 - (\vec{s}_1 \cdot \hat{p})^2][\vec{s}_2^2 - (\vec{s}_2 \cdot \hat{p})^2] - [(\vec{s}_1 \times \vec{s}_1) \cdot \hat{p}][(\vec{s}_2 \times \vec{s}_2) \cdot \hat{p}]$ 



[Wang, **QQ**, Yu, 2211.07332]



# **Complementarity: T-odd and -even CPV**

encoded in angular distribution of secondary decays of  $N^*(1520)K^*$ 



Complementary CP asymmetries can thereby be measured, which depend on  $\cos \delta_s \& \sin \delta_s$ .

The expectations of the complementary T-odd and T-even correlations are both

$$\begin{split} & \frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto s_{1}^{2} s_{2}^{2} \left( \left| \mathcal{H}_{+1,+\frac{3}{2}} \right|^{2} + \left| \mathcal{H}_{-1,-\frac{3}{2}} \right|^{2} \right) \\ & + s_{1}^{2} (\frac{1}{3} + c_{2}^{2}) \left( \left| \mathcal{H}_{+1,+\frac{1}{2}} \right|^{2} + \left| \mathcal{H}_{-1,-\frac{1}{2}} \right|^{2} \right) \\ & + 2 c_{1}^{2} (\frac{1}{3} + c_{2}^{2}) \left( \left| \mathcal{H}_{0,-\frac{1}{2}} \right|^{2} + \left| \mathcal{H}_{0,+\frac{1}{2}} \right|^{2} \right) \\ & - \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi \qquad (Q_{3}) \\ & + \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi \qquad (P_{3}) \\ & - \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi \qquad (Q_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+\frac{1}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-\frac{1}{2}}^{*} \right) \cos \varphi \qquad (P_{1} + \frac{1}{2} c_{2} c_$$

#### [Wang, **QQ**, Yu, 2211.07332]





#### Meson can be baryon!

 $(B \rightarrow VV)$ 

#### Summary

- New facilities provide more opportunities to probe CP violation in favor physics.
- Not only more precise measurements can be performed because of larger statistics, better detector performance (e.g. CEPC),
- but also it open doors for new CPV observables, new channels, new methodology.

#### Summary

