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CP violation — Holy Grail of flavor physics

• One of the Sakharov’s criteria of baryon asymmetry of universe


➡ Requires new source of CP violation


• Determination of CKM matrix phase angles  


➡ To test the unitarity of the CKM matrix 


• Open windows to new dynamics beyond the SM
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[Sakharov, ’67]

VCKM =



Status

• CP violation measured in  


➡ Decay, mixing, interference of decay w/ and w/o mixing 


➡ , , ,  mesons


• No evidence of new CPV source beyond the SM


• What should/can CEPC (and other future experiments) do?

K B0,+ B0
s D
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Do something new

• Lager statistics 

• Better acceptance and detection  

• Better time resolution  

• Better flavor tagging  

• ……

• New precision: , 


• New channel:  


• New observable: double-mixing CPV 


• New methodology: T-odd and -even CPV


• ……

Bs → J/ψK B0 → π0π0

B0 → γγ



New Precision
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An example: Bs → J/ψ ϕ

• : important for determination of the CKM phase 


• All charged-particle final state: LHCb likes that.


• CEPC, as a Tera-Z, almost 2 orders fewer B mesons produced 

• but has significantly better detection efficiency, flavor tagging, time resolution than LHCb

Bs → J/ψ ϕ ϕs = − 2βs

βs ≡ arg[ − (VtsV*tb)/(VcsV*cb)]

[Li,Ruan,Zhao, 2205.10565]6

(5 fs vs 20-30 fs)



An example: Bs → J/ψ ϕ

[Li,Ruan,Zhao, 2205.10565]
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• Tera-Z, competitive with HL-LHC 


• 10 Tera-Z, better than HL-LHC
CEPC measurement of : ϕs



Another example: B0 → π0π0

• : used to extract the CKM angle , together with other isospin-partner 
channels  and 


• All neutral-particle final state: LHCb fails, CEPC wins Belle II (statistics)


• CEPC, perfect reconstruction of  by 

B0 → π0π0 α
B0 → π+π− B+ → π+π0

π0 γγ

[Wang, Descotes-Genon, Deschamps, 

Li, Chen, Zhu, Ruan, JHEP, ‘22]
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α ≡ arg[ − (VtdV*tb)/(VudV*ub)]



Another example: B0 → π0π0

• Tera-Z:  

• 40 times better than world average


• 5 times better than Belle II

α(ππ) = (91.8 ± 0.4)∘

[Wang, Descotes-Genon, Deschamps, 

Li, Chen, Zhu, Ruan, JHEP, ‘22]
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New Channel
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An example: B0 → γγ

• : simplest decay of B meson, like 


➡ Sensitive to dynamics beyond the SM (FCNC), e.g. CP violation


➡ Clean environment to address the intricate strong interaction mechanism of the heavy-
meson systems


• Silver channel of Belle II

B0 → γγ Bd,s → μμ
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Belle II 
Physics Book



• Standard model prediction:  

• BEllE II precision  

• Tera-Z precision: (Assuming efficiency*purity = 50% (twice ) with )B0 → π0π0 1011 B0
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B(B0 → γγ) = (1.9+1.1
−1.0) × 10−8 ACP(B0 → γγ) ≈ 24 %

[Shen, Wang, Wei, JHEP, ’20] 

[QQ, Shen, Wang, Wang, PRL, ’23]

σ(B)/B ≈ 3 % , σ(ACP) ≈ 7.8 %

An example: B0 → γγ

Evidence of  with Tera-Z.ACP(B0 → γγ)

Discovery of  with 4 Tera-Z!ACP(B0 → γγ)

(Wild estimation)



New Observable
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Traditional CP violation observables
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• Common CPV observables  


✓ CPV in decay (direct CPV)


✓ CPV in mixing (indirect CPV)


✓ CPV in interference between a decay without and with initial mixing


• CPV in interference between a decay without and with final mixing 

[Wang,Li,Yu,PRL119 (2017)181802]

(M0 → f ) + (M0 → M̄0 → f )

(P → M0) + (P → M̄0 → M0)

|M0 → M̄0 | ≠ |M̄0 → M0 | ( |q/p | ≠ 1)

|M0 → f | ≠ |M̄0 → f̄ |



• Double mixing CP violation: induced by interference of different mixing paths of 
neutral mesons in cascade decays


• Consider 


• General Case: 


It does not require nonzero strong phases! 


Strong phases can be extracted from experiment data without theoretical input.


A 2-D time dependence analysis can be performed.

B0
s → ρ0K → ρ0π−e+ν

15

B0
s → ρ0K̄0 → ρ0K0 → ρ0π−e+ν

B0
s → B̄0

s → ρ0K0 → ρ0π−e+ν

Double mixing CP violation

Upper path: 

Lower path: 

[Shen,Song,QQ, 2301.05848]

(M0
1 → M̄0

2 → M0
2) + (M0

1 → M̄0
1 → M0

2)



16

• Benefiting from good time resolution, CEPC can do the 2D time dependence analysis

Double mixing CP violation — Significance
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Sh ∝ sinh
ΔΓ1t1

2
sin(Δm2t2) sin(ϕ1 + ϕ2 + 2δ)]

Sn ∝ sin(Δm1t1) sinh
ΔΓ2t2

2
sin(ϕ1 + ϕ2 + 2δ) KS + KL

 interferenceKS, KL

• Take  as an example (penguin 0)B0
s (t1) → ρ0K̄0(t2) → ρ0π−e+ν ≈

Time dependence:

Double mixing CP violation — Significance

[Shen,Song,QQ, 2301.05848]
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• Take  as an exampleB0
d(t1) → D0K0(t2) → (K−π+)(π+e−ν̄)

⟨D0K0 |B0⟩ = ⟨D̄0K0 |B0⟩rBei(δs+δ2)

Double mixing CP violation — CKM phase

⟨D0K̄0 | B̄0⟩ = ⟨D̄0K0 |B0⟩eiδ1

q1/p1 = |q1/p1 |e−iϕ1

q2/p2 = |q2/p2 |e−iϕ2

3 Parameters: , , rB δs δw ≡ ϕ2 − ϕ1 + δ1 − δ2 ≈ − 2β − γ

ACP(t1, t2) =
e−ΓBt1 sin ΔmBt1S(t2)

e−ΓBt1[C′ (t2)(1 + cos ΔmBt1)+S′ (t2)sin ΔmBt1]

S(t2) =
e−Γ2t2

2
rB[−2 sin δw cos δs sinh

ΔΓK

2
t2 + 2 sin δw sin δs sin ΔmKt2]

C′ (t2) =
e−Γ2t2

2
[(1 + r2

B)cosh
ΔΓK

2
t2 + (1 − r2

B)cos ΔmKt2]

S′ (t2) =
e−Γ2t2

2
rB[2 cos δw sin δs sinh

ΔΓK

2
t2 + 2 cos δw cos δs sin ΔmKt2]

Strong phase

[Shen,Song,QQ, 2301.05848]
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• Take  as an exampleB0
d(t1) → D0K0(t2) → (K−π+)(π+e−ν̄)

Double mixing CP violation — CKM phase

[Shen,Song,QQ, 2301.05848]
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• Take  as an exampleB0
d(t1) → D0K0(t2) → (K−π+)(π+e−ν̄)

Double mixing CP violation — CKM phase

Parameters Central value Uncertainty

0.367 ± 0.014

164 ± 4

109 ± 5

rB

δw

δs

Assuming 3000 events (Belle II):

Input:  = 2β + γ (109.9 ± 3.7)∘

[Shen,Song,QQ, 2301.05848]



New methodology
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(Baryon)



[Wang, Descotes-Genon, Deschamps, 

Li, Chen, Zhu, Ruan, JHEP, ‘22]

Baryon factories!



Baryon is NOT meson!
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• Meson has two quarks.


• Baryon has three quarks.


• All baryons has non-zero spins.
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Difference between meson and baryon

More is different!



• Polarizations/helicities of particle provide fruitful information to build more observables.


• Lee-Yang parameters: α, β, γ
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,      ,   α =
2Re(S*P)

|S |2 + |P |2 β =
2Im(S*P)

|S |2 + |P |2 γ =
|S |2 − |P |2

|S |2 + |P |2

A(Λ0 → pπ) = ūp(S + Pγ5)uΛ

Polarization induced observables

Theoretically, they are expressed by partial wave amplitudes (helicity amplitudes ) as:h± = S ± P

Experimentally, they are measured by proton polarizations:

Pp =
(α+cos θ) ̂p+β ̂p × ̂s+γ( ̂p × ̂s) × ̂p

1 + α cos θ



• Baryon case:  

   e.g., BESIII measure the Lee-Yang parameters in

   and the induced CPVΞ− → Λπ− → p2π−
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( β + β̄
α − ᾱ )Ξ

≈ ωP − ωS

Polarization induced CP violation

[BESIII, Nature, '22]

Purely weak phase!

B0
K+

π−

ACP =
Γ − Γ
Γ + Γ

∝ sin ω sin δ

Weak phase Strong phase
Disaster disappears!

• Meson case:  

    Direct CP violation

Disaster for theory!



• The reason is the  and  strong phase dependence:  vs  

• Question: does this complementarity generally exist?


• Question: if yes, how to find them systematically?

Aα
CP Aβ

CP sin δs cos δs
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Polarization induced CP violation

• Whatever the strong phase is, either  or 
 would be larger than 0.7.


• If both of CPVs are measured, the strong 
phase can be determined.

|sin δ |
|cos δ |
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• General conclusion: Time-reversal-odd correlation  induces CPV with cosine 
dependence on strong phases


if it satisfies two conditions: (i) for the final-state basis { , n =1,2,…}, there is a 
unitary transformation , s.t. ; (2) 

Q−

|ψn⟩
U UT |ψn⟩ = e−iα |ψn⟩ UQ−U† = Q− .

T-odd correlation induced CP asymmetry

TQ− = − Q−T, AQ−
CP ≡

⟨Q−⟩ − ⟨Q̄−⟩
⟨Q−⟩ + ⟨Q̄−⟩

∝ cos δs

2

have cosine dependence on strong phase di↵erences. The
proof also provides a systematic method to find this type
of T-odd correlations, and thus can lead to a blanket
search for baryonic CPV. Applying it to two-body decays,
T-odd correlations can be built by triple- and pentuple-
products of momentum and spin vectors. Such T-odd
correlations are reflected as the imaginary parts of helic-
ity amplitude interference. This general conclusion was
previously observed in specific cases like B ! V V and
D ! V V decays [5–11]. It also provides a natural expla-
nation why T-odd correlation was generally used to in-
vestigate CPV in the higgs couplings htt̄ and h⌧ ⌧̄ without
the consideration of CP conserved phases [27, 28]. More-
over, for each of such T-odd corrections, there exists a
corresponding T-even correlation, whose expectation is
exactly the real part of the same helicity amplitude in-
terference. Therefore, CP asymmetries induced by such
T-odd and -even correlations are exactly complementary
to each other, and at least one of them would be large
whether the strong phase di↵erence is small or large.

Experimentally, although it is di�cult to directly mea-
sure them at colliders since particle spins are involved,
the T-odd and the corresponding T-even correlations can
be extracted from the angular distribution of further de-
cays of the primary decay products. We eventually pro-
pose the decay chains ⇤0

b ! N⇤(1520)⇢ ! p⇡⇡⇡ and
⇤0
b ! N⇤(1520)K⇤ ! p⇡K⇡ as examples to illustrate

their measurements and accessibility at the LHCb in the
near future, and the great potential of searching for CPV
in the baryon sector.

Strong phase dependence– We firstly prove the proposi-
tion that CP asymmetries induced by a type of T-odd
correlations Q�, A

Q�
CP , are proportional to the cosine of

involved strong phase angle di↵erences, cos �s. The ex-
plicit meaning of T-odd is that Q� transforms under a
time reversal as

T Q� = �Q�T . (1)

It should be noted that not any Q� can induce a CP
asymmetry proportional to cos �s [29]. A qualified Q�
must satisfy the following conditions: (i) In the Hilbert
space of the final states of a physical process that we
are interested, with a properly chosen basis {| ni, n
=1,2,...}, there exists a unitary transformation U that
transforms T | ni back to | ni up to a universal phase
factor, i.e., UT | ni = ei↵| ni; (ii) Q� is conserved un-
der this unitary transformation, i.e. UQ�U† = Q�. The

proof of AQ�
CP being proportional to cos �s is as follows.

The Q� expectation value of the final state |fi ⌘ S|ii
of a process can be expressed in terms of the transition
amplitudes from the initial state to basis vectors An ⌘

h n|S|ii, as

hf |Q�|fi = hi|S†Q�S|ii
=

X

m,n

h i|S†| mih m|Q�| nih n|S| ii

=
X

m,n

A⇤
mAnh m|Q�| ni . (2)

The dynamics are now coded in An’s, and h m|Q�| ni’s
only consist of kinematics. Then it can be shown that
the matrix element h m|Q�| ni is purely imaginary by

h m|Q�| ni = h m|T †T Q�| ni⇤

= �h m|T †Q�T | ni⇤

= �h m|T † U†U Q� U†U T | ni⇤

= �h m|T †U† Q� UT | ni⇤

= �h m|Q�| ni⇤ , (3)

where in the first step the anti-unitarity of T is used.
Because the expectation hf |Q�|fi must be real, only the
imaginary part of the amplitude interference Im(A⇤

mAn)
contributes. Or mathematically, one can obtain an equiv-
alent result through interchanging the position of indices
m and n since they are dummy, and then apply the her-
miticity of Q� as an observable. Significantly, the gen-
eral time evolution operator S that we used in the proof
implies that the above conclusion is valid for both per-
turbative and non-perturbative problems, and for diverse
physical systems such as beauty, charm, strange, top and
even Higgs physics.

The CP asymmetry induced by a T-odd correlation
Q� is defined as

AQ�
CP ⌘ hf |Q�|fi � hf̄ |Q̄�|f̄i

hf |Q�|fi+ hf̄ |Q̄�|f̄i
, (4)

where the CP transformed |f̄i ⌘ S(CP )|ii and Q̄� ⌘
(CP )Q�(CP )�1. Inserting complete basis of | ni and
| ̄ni ⌘ CP | ni, the numerator is given by

AQ�
CP /

X

m,n

i Im(A⇤
mAn � Ā⇤

mĀn)h m|Q�| ni , (5)

where the relation h m|Q�| ni = h ̄m|Q̄�| ̄ni indepen-
dent on dynamics has been used. The imaginary di↵er-
ence Im(A⇤

mAn�Ā⇤
mĀn) must be proportional to the sine

of the weak phase di↵erence sin �w and hence the cosine
of the relevant strong phase di↵erence cos �s. Quod erat

demonstrandum.

Analogously, if a T-even correlation Q+ satisfies con-
dition (i) and (ii), the right-hand side of (3) flips the
sign such that the Q+ expectation depends on the real
part of amplitude interferences. Therefore, its induced
CP asymmetry will be proportional to the sine of the
corresponding strong phase di↵erence, sin �s. Actually,
direct CP asymmetries are induced by a T-even corre-
lation, which can be defined by |fdihfd| with |fdi the
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Analogously, if a T-even correlation Q+ satisfies con-
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Proof: 

⟨ f |Q− | f⟩ ∋ Im(A*mAn) AQ−
CP ∝ sin δwcos δs

[Wang, QQ, Yu, 2211.07332] AQ+
CP ∝ sin δwsin δs



• Example 1. Triple product  in 


• Example 2. Triple product  in 

Q1 ≡ ( ⃗s1 × ⃗s2) ⋅ ̂p P → P1P2

Qp ≡ ( ̂p1 × ̂p2) ⋅ ̂p3 P → P1P2P3P4
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T-odd correlation induced CP asymmetry

[Wang, QQ, Yu, 2211.07332]

T : ⃗p → − ⃗p , h → h; U = R(π) : − ⃗p → ⃗p , h → h condition (i)

T : Q1 → − Q1; U = R(π) : Q1 → Q1 condition (ii)

T : ⃗p → − ⃗p ; U = P : − ⃗p → ⃗p condition (i)

T : Qp → − Qp; U = P : Qp → − Qp condition (ii)



• For the decay , three such T-odd correlations


• Their expectations are imaginary helicity amplitude interferences


• Moreover, complementary T-even correlations are found 

Λb → N*(1520)K*
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Complementarity: T-odd and -even CPV

[Wang, QQ, Yu, 2211.07332]

Q1 ≡ ( ⃗s1 × ⃗s2) ⋅ ̂p =
i
2

(s+
1 s−

2 − s−
1 s+

2 )

Q2 ≡ ( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p)Q1 + Q1( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p) =
i
2

sz
1sz

2(s+
1 s−

2 − s−
1 s+

2 ) +
i
2

(s+
1 s−

2 − s−
1 s+

2 )sz
1sz

2

Q3 ≡ ( ⃗s1 ⋅ ⃗s2)Q1 + Q1( ⃗s1 ⋅ ⃗s2) − Q2 =
i
2

(s+
1 s+

1 s−
2 s−

2 − s−
1 s−

1 s+
2 s+

2 )

⟨Q3⟩ = 2 3 Im (H+1,+ 3
2
H*

−1,− 1
2

+ H*
−1,− 3

2
H+1,+ 1

2
)

P1 ≡ ⃗s1 ⋅ ⃗s2 − ( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p), P2 ≡ ( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p)P1 + P1( ⃗s1 ⋅ ̂p)( ⃗s2 ⋅ ̂p),

P3 ≡ P2
1 − [ ⃗s 2

1 − ( ⃗s1 ⋅ ̂p)2][ ⃗s 2
2 − ( ⃗s2 ⋅ ̂p)2] − [( ⃗s1 × ⃗s1) ⋅ ̂p][( ⃗s2 × ⃗s2) ⋅ ̂p]

⟨P3⟩ ∝ Re (H+1,+ 3
2
H*

−1,− 1
2

+ H*
−1,− 3

2
H+1,+ 1

2
)

Exactly Complementary!

Real part

 vs cos δs sin δs

Triple product

Hepta product

Penta product



• The expectations of the complementary T-odd and T-even correlations are both 
encoded in angular distribution of secondary decays of 


• Complementary CP asymmetries 

can thereby be measured, which 

depend on .

N*(1520)K*

cos δs & sin δs
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4

P 2
1�[~s 2

1 �(~s1·p̂)2][~s 2
2 �(~s2·p̂)2]�[(~s1⇥~s1)·p̂][(~s2⇥~s2)·p̂] =

(s+1 s
+
1 s

�
2 s

�
2 + s�1 s

�
1 s

+
2 s

+
2 )/2. Their expectations are ex-

actly the real parts of the interferences corresponding to
Q2,3 in (12).
Owing to the di�culties in measurements of particle

spins at colliders, the above observables are unlikely to
be directly measured at experiments. Fortunately, if the
final-state particles are unstable and thus subsequently
decay into more particles, most of the T-odd correlations
can be extracted from the angular distributions of the
integral decay chains. Next, we will perform the angular
analysis on the ⇤b ! N⇤(1520)V decay as an applying
example to the baryon CPV.
CPV in baryon sector.– We analyze the ⇤0

b !
N⇤(1520)V decay channel, where N⇤(1520) further de-
cays into p⇡ and V being K⇤ or ⇢ further decays into
K⇡ or ⇡⇡. To connect the T-odd observable to the ex-
perimental measurement, we derive the angular distribu-
tion of the decay chain ⇤0

b ! N⇤(1520)V ! p⇡P1P2 in
the framework of helicity formalism [30]. The kinematic
variables are identical to the depiction of FIG. 1, corre-
spondingly. The angular distribution is given as
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where s1,2 = sin ✓1,2 and c1,2 = cos ✓1,2. Two inde-
pendent T-odd observables are involved in the angular
distribution with respect to sin' and sin 2', AT,1 ⌘
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with the weight functions W1 = sin' c1 c2 and W2 =
sin 2' s1 s2, respectively. The expectation of the comple-
mentary T-even correlations hP1+2P2i and hP3i are also
contained in the angular distribution (13) with respect
to cos' and cos 2', and can be analogously extracted.
In the rest frame of ⇤0

b , we define ~na = ~p1 ⇥ ~p2/|~p1 ⇥ ~p2|,

FIG. 1. The depicted figures of angular distributions of ⇤0
b !

N⇤(1520)K⇤ ! p⇡K⇡. The angle ✓1, ✓2 are defined in the
rest frames of K⇤ and N⇤(1520), respectively. These angles
also correspond to the definition of angular distribution (13).

~nb = ~p3 ⇥ ~p4/|~p3 ⇥ ~p4|, and then sin' and sin 2'
can be expressed in terms of the momentum variables,
sin' = (~na ⇥ ~nb) · p̂b = ~na · (~nb ⇥ p̂b) / (~p1 ⇥ ~p2) · ~p4 and
sin 2' = 2 sin' cos' / [(~p1⇥~p2) ·(~p3⇥~p4)][(~p1⇥~p2) ·~p4].
Here, we can see their T-odd property, but it must be
noticed that the true T-odd correlation is constructed
based on the polarizations and momenta of N⇤,K⇤, not
the p,K,⇡ momenta. Then, the induced CP asymme-
tries are given by the di↵erences between ATi and their
CP conjugate values

AT,i
CP =

AT,i � ĀT,i

AT,i + ĀT,i
. (15)

It should be emphasized that AT,i
CP are proportional to the

cosine of some strong phase di↵erence cos �s,i, as proved
before. More than that, CP asymmetries induced by
hP1+2P2i and hP3i are proportional to the sine of exactly
the same phase di↵erence sin �s,i, since these observables
are given by the real parts of the same helicity ampli-
tude interferences. Therefore, they are exactly comple-
mentary to each other. Whether �s,i is small or large, the
CP asymmetry has a chance to be observed. From the
experimental aspect, the data samples of N⇤(1520)K⇤

and N⇤(1520)⇢ are remarkable and prospective to search
for baryonic CPV [23]. Above discussion directly applies
to other decays with same quantum numbers like those
listed in [33] such as ⇤b ! ⇤(1520)⇢0,⇤(1520)�. It can
also be extended to other two-body baryon decays such
as ⇤0

b ! ⇤V [34–37], though it has a smaller data sam-
ple [38].
Summary.– In this work, we prove that a type of T-odd
correlations that satisfy two proposed conditions induce
CPV observables proportional to cosine of strong phase
di↵erences. This property makes them complementary
to traditional direct CP asymmetries and neutral me-
son mixing induced CPV observables, i.e., still sensitive
in case of small strong phase di↵erences. Hence, it is a
powerful tool that can be used to search for CPV in the
baryon sector. The proof in passing provides the recipe
of constructing such T-odd correlations. In baryon de-
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sin 2' s1 s2, respectively. The expectation of the comple-
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contained in the angular distribution (13) with respect
to cos' and cos 2', and can be analogously extracted.
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rest frames of K⇤ and N⇤(1520), respectively. These angles
also correspond to the definition of angular distribution (13).

~nb = ~p3 ⇥ ~p4/|~p3 ⇥ ~p4|, and then sin' and sin 2'
can be expressed in terms of the momentum variables,
sin' = (~na ⇥ ~nb) · p̂b = ~na · (~nb ⇥ p̂b) / (~p1 ⇥ ~p2) · ~p4 and
sin 2' = 2 sin' cos' / [(~p1⇥~p2) ·(~p3⇥~p4)][(~p1⇥~p2) ·~p4].
Here, we can see their T-odd property, but it must be
noticed that the true T-odd correlation is constructed
based on the polarizations and momenta of N⇤,K⇤, not
the p,K,⇡ momenta. Then, the induced CP asymme-
tries are given by the di↵erences between ATi and their
CP conjugate values

AT,i
CP =

AT,i � ĀT,i

AT,i + ĀT,i
. (15)

It should be emphasized that AT,i
CP are proportional to the

cosine of some strong phase di↵erence cos �s,i, as proved
before. More than that, CP asymmetries induced by
hP1+2P2i and hP3i are proportional to the sine of exactly
the same phase di↵erence sin �s,i, since these observables
are given by the real parts of the same helicity ampli-
tude interferences. Therefore, they are exactly comple-
mentary to each other. Whether �s,i is small or large, the
CP asymmetry has a chance to be observed. From the
experimental aspect, the data samples of N⇤(1520)K⇤

and N⇤(1520)⇢ are remarkable and prospective to search
for baryonic CPV [23]. Above discussion directly applies
to other decays with same quantum numbers like those
listed in [33] such as ⇤b ! ⇤(1520)⇢0,⇤(1520)�. It can
also be extended to other two-body baryon decays such
as ⇤0

b ! ⇤V [34–37], though it has a smaller data sam-
ple [38].
Summary.– In this work, we prove that a type of T-odd
correlations that satisfy two proposed conditions induce
CPV observables proportional to cosine of strong phase
di↵erences. This property makes them complementary
to traditional direct CP asymmetries and neutral me-
son mixing induced CPV observables, i.e., still sensitive
in case of small strong phase di↵erences. Hence, it is a
powerful tool that can be used to search for CPV in the
baryon sector. The proof in passing provides the recipe
of constructing such T-odd correlations. In baryon de-
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Summary

• New facilities provide more opportunities to probe CP violation in favor 
physics. 


• Not only more precise measurements can be performed because of larger 
statistics, better detector performance (e.g. CEPC), 


• but also it open doors for new CPV observables, new channels, new 
methodology.
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